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Superconducting-�ux qubits

Unlike microscopic entities-electrons, atoms, ions, and photons- on which
other qubits are based, superconducting quantum circuits are based on
the electrical (LC) oscillator and are macroscopic systems with a large
number of (usually aluminum) atoms assembled in the shape of metallic
wires and plates.
Superconducting qubits operates through the following phenomena:
superconductivity, which is the frictionless �ow of electrical �uid through
the metal at low temperature (below the superconducting phase
transition),
and the Josephson e�ect, which endows the circuit with nonlinearity
without introducing dissipation or dephasing.
The collective motion of the electron �uid around the circuit is described
by the �ux φ threading the inductor, which plays the role of the
center-of-mass position in a mass-spring mechanical oscillator.
We will show how a Josephson tunnel junction transforms the circuit into
a true arti�cial atom, for which the transition from the ground state to
the excited state (|g>-|e>) can be selectively excited and used as a
qubit, unlike in the pure LC harmonic oscillator.
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Classical LC Harmonic Oscillator

We start with the classical description of a linear LC resonant circuit,
where energy E (t) oscillates between electrical energy in the capacitor C
and magnetic energy in the inductor L.
The instantaneous, time-dependent energy in each element is derived
from its current and voltage,

E (t) =

∫ t

−∞
V (t ′) I (t ′) dt ′ (1)

where V (t ′) and I (t ′) denote the voltage and current of the capacitor or
inductor.
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Classical LC Harmonic Oscillator

Here, we represent the circuit elements in terms of one of its generalized
circuit coordinates, charge Q(t) or �ux Φ(t) de�ned as the time integral
of the voltage:

Φ(t) =

∫ t

−∞
V (t ′) dt ′ (2)

By using the relations V = LdI/dt and I = CdV /dt and applying the
integration by parts formula, we can write down energy terms for the
capacitor and inductor in terms of the node �ux:

TC =
1

2
C Φ̇2 (3)

UL =
1

2L
Φ2 (4)
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Classical Lagrangian and Hamiltonian
The Lagrangian can be written as the di�erence between the kinetic and
potential energy terms:

L = TC − UL =
1

2
C Φ̇2 − 1

2L
Φ2 (5)

By using the Legendre transformation, we need to calculate the
momentum conjugate to the �ux, which in this case is the charge on the
capacitor:

Q =
∂L
∂Φ̇

= C Φ̇ (6)

The Hamiltonian of the system is now de�ned as:

H = QΦ̇− L =
Q2

2C
+

Φ2

2L
≡ 1

2
CV 2 +

1

2
LI 2 (7)

Note that this Hamiltonian has the same mathematical structure of a
mechanical harmonic oscillator which can be expressed in position, and
momentum (x, p) coordinates in the form:

H = p2/2m + mω2x2/2
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Quantum LC Hamiltonian

A quantum-mechanical description of the system can be obtained by
expressing the charge and �ux coordinates as quantum operators.
The classical coordinates satisfy the Poisson bracket:

{f , g} =
δf

δΦ

δg

δQ
− δg

δΦ

δf

δQ
(8)

→ {Φ,Q} =
δΦ

δΦ

δQ

δQ
− δQ

δΦ

δΦ

δQ
= 1− 0 = 1 (9)

the quantum operators similarly satisfy a commutation relation:

[Φ̂, Q̂] = Φ̂Q̂ − Q̂Φ̂ = i~ (10)
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Quantum LC Hamiltonian

De�ning the quantum operators: reduced �ux φ ≡ 2πΦ/Φ0 and the
reduced charge n = Q/2e, the quantum-mechanical Hamiltonian for the
circuit can be written:

H = 4ECn
2 +

1

2
ELφ

2 (11)

where EC = e2/(2C ) is the charging energy required to add each electron

of the Cooper-pair to the island and UL = (Φ0/2π)2 /L is the inductive
energy, where Φ0 = h/(2e) is the superconducting quantum magnetic
�ux .
The quantum operator n is the excess number of Cooper-pairs on the
island, and φ � the reduced �ux � is denoted the �gauge-invariant phase�
across the inductor. These two operators form a canonical conjugate
pair, obeying the commutation relation [φ, n] = i .
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Quantum LC Hamiltonian
The Hamiltonian is identical to the one describing a particle in a
one-dimensional quadratic potential (elastic force). We can consider φ as
the generalized position coordinate, so that the �rst term is the kinetic
energy and the second term is the potential energy. The form of the
potential energy in�uences the eigensolutions. In particular, since the
potential energy term is quadratic (UL ∝ φ2), the solution to this
eigenvalue problem gives an in�nite series of eigenstates
|k〉, (k = 0, 1, 2, . . . ), whose corresponding eigenenergies Ek are all
equidistantly spaced,i.e.:

Ek+1 − Ek = ~ωr

where
ωr =

√
8ELEC/~ = 1/

√
LC

denotes the resonant frequency of the system.
A more compact form for the quantum harmonic oscillator (QHO)
Hamiltonian is:

H = ~ωr

(
n +

1

2

)
(12)
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Dissipationless LC Circuit
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Dissipationless LC Circuit

By adding a dissipative element in parallel (Resistor)

En = ~ωr

[
n
(
1 + i

2Q

)
+ 1

2

]
Q = RCωr

(13)

Dissipation broadens energy levels → undesidered !
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Limits of the Quantum Harmonic Oscillator

The linearity of the QHO is a limitation for processing quantum
information. To be used as a qubit, a computational subspace consisting
of only two energy states (usually the two-lowest energy eigenstates) in
between which transitions can be driven without also exciting other levels
in the system is required. Since many gate operations, such as
single-qubit gates, depend on frequency selectivity, the equidistant
level-spacing of the QHO poses a practical limitation.

To mitigate the problem of unwanted dynamics involving
non-computational states, we need to add anharmonicity (or nonlinearity)
into our system. In short, we require the transition frequencies ω0→1

q
and

ω1→2

q
to be su�ciently di�erent to be individually adressable. In general,

the larger the anharmonicity the better. In practise, the amount of
anharmonicity sets a limit on how short the pulses used to drive the qubit
can be.
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Josephson Junction LC Circuit
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Josephson Junction LC Circuit

13/16



Anharmonic Josephson Junction Oscillator

We consider the Josephson junction � a nonlinear, dissipationless circuit
element that forms the backbone in superconducting circuits. By
replacing the linear inductor of the QHO with a Josephson junction,
playing the role of a nonlinear inductor, we can modify the functional
form of the potential energy. The potential energy of the Josephson
junction can be derived from the Josephson relations of the current and

I = Ic sin(φ), V =
~
2e

dφ

dt
(14)

resulting in a modi�ed Hamiltonian

H = 4ECn
2 − EJ cos(φ) (15)

where EC = e2/ (2CΣ) ,CΣ = Cs + CJ is the total capacitance, including
both shunt capacitance Cs and the self-capacitance of the junction CJ ,
and EJ = IcΦ0/2π is the Josephson energy, with Ic being the critical
current of the junction.
The potential energy takes a cosinusoidal form, which makes the
oscillator anharmonic and the energy spectrum non-degenerate.
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Anharmonic Josephson Junction Oscillator
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Anharmonic mechanic Oscillator

Note that anharmonicity are found in the mechanical case (Morse
potential)
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