Superconducting-flux qubits
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Superconducting-flux qubits

Unlike microscopic entities-electrons, atoms, ions, and photons- on which
other qubits are based, superconducting quantum circuits are based on
the electrical (LC) oscillator and are macroscopic systems with a large
number of (usually aluminum) atoms assembled in the shape of metallic
wires and plates.

Superconducting qubits operates through the following phenomena:
superconductivity, which is the frictionless flow of electrical fluid through
the metal at low temperature (below the superconducting phase
transition),

and the Josephson effect, which endows the circuit with nonlinearity
without introducing dissipation or dephasing.

The collective motion of the electron fluid around the circuit is described
by the flux ¢ threading the inductor, which plays the role of the
center-of-mass position in a mass-spring mechanical oscillator.

We will show how a Josephson tunnel junction transforms the circuit into
a true artificial atom, for which the transition from the ground state to
the excited state (|g>-|e>) can be selectively excited and used as a
qubit, unlike in the pure LC harmonic oscillator.
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Classical LC Harmonic Oscillator

We start with the classical description of a linear LC resonant circuit,
where energy E(t) oscillates between electrical energy in the capacitor C
and magnetic energy in the inductor L.

The instantaneous, time-dependent energy in each element is derived
from its current and voltage,

E(t) —/t V(t')I(t)dt (1)

o0

where V (t') and / (t') denote the voltage and current of the capacitor or
inductor.
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Classical LC Harmonic Oscillator

Here, we represent the circuit elements in terms of one of its generalized
circuit coordinates, charge Q(t) or flux ®(t) defined as the time integral
of the voltage:

cb(t)_/t V(t')dt’ (2)

By using the relations V = Ldl/dt and | = CdV//dt and applying the
integration by parts formula, we can write down energy terms for the
capacitor and inductor in terms of the node flux:

1 .
Tc = EC‘DZ (3)
1
Z/{[_ = ﬂq)z (4)
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Classical Lagrangian and Hamiltonian

The Lagrangian can be written as the difference between the kinetic and
potential energy terms:

L=Tc—U = 7c¢2fﬂ¢2 (5)

By using the Legendre transformation, we need to calculate the
momentum conjugate to the flux, which in this case is the charge on the

capacitor:
oL :
Q=22 =cCd 6
96 (6)
The Hamiltonian of the system is now defined as:
Y Q9?1 2, 1,
H=Qo-L= 2C—k——fCV 2Ll (7)

Note that this Hamiltonian has the same mathematical structure of a
mechanical harmonic oscillator which can be expressed in position, and
momentum (x, p) coordinates in the form:

H = p?/2m + mw?x? /2
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Quantum LC Hamiltonian

A quantum-mechanical description of the system can be obtained by
expressing the charge and flux coordinates as quantum operators.
The classical coordinates satisfy the Poisson bracket:

5f g og Of

{f,g}: ﬁw—(ﬁ)w (8)
76<D6Q 5Q6¢7 6
*){(D,Q}—%w*%w—l 0=1 (9)

the quantum operators similarly satisfy a commutation relation:

~

[®,Q] = Q- Qb = (10)
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Quantum LC Hamiltonian

Defining the quantum operators: reduced flux ¢ = 27®/dg and the
reduced charge n = Q/2e, the quantum-mechanical Hamiltonian for the
circuit can be written:

1
H =4Ecn® + 5Equ? (11)

where Ec = €2/(2C) is the charging energy required to add each electron
of the Cooper-pair to the island and U, = (®/27)” /L is the inductive
energy, where ®y = h/(2e) is the superconducting quantum magnetic
flux .

The quantum operator n is the excess number of Cooper-pairs on the
island, and ¢ — the reduced flux — is denoted the “gauge-invariant phase”
across the inductor. These two operators form a canonical conjugate
pair, obeying the commutation relation [¢, n] = i.
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Quantum LC Hamiltonian

The Hamiltonian is identical to the one describing a particle in a
one-dimensional quadratic potential (elastic force). We can consider ¢ as
the generalized position coordinate, so that the first term is the kinetic
energy and the second term is the potential energy. The form of the
potential energy influences the eigensolutions. In particular, since the
potential energy term is quadratic (U; o ¢?), the solution to this
eigenvalue problem gives an infinite series of eigenstates
|k),(k=0,1,2,...), whose corresponding eigenenergies Ej are all
equidistantly spaced,i.e.:

Exy1 — Ex = hw;,

where
wy =/8EEc/h=1/VLC

denotes the resonant frequency of the system.
A more compact form for the quantum harmonic oscillator (QHO)
Hamiltonian is:

1o () 2
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Dissipationless LC Circuit
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Dissipationless LC Circuit

By adding a dissipative element in parallel (Resistor)
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Dissipation broadens energy levels — undesidered !

10/16



Limits of the Quantum Harmonic Oscillator

The linearity of the QHO is a limitation for processing quantum
information. To be used as a qubit, a computational subspace consisting
of only two energy states (usually the two-lowest energy eigenstates) in
between which transitions can be driven without also exciting other levels
in the system is required. Since many gate operations, such as
single-qubit gates, depend on frequency selectivity, the equidistant
level-spacing of the QHO poses a practical limitation.

To mitigate the problem of unwanted dynamics involving
non-computational states, we need to add anharmonicity (or nonlinearity)

into our system. In short, we require the transition frequencies wd~! and
wa™? to be sufficiently different to be individually adressable. In general,

the larger the anharmonicity the better. In practise, the amount of
anharmonicity sets a limit on how short the pulses used to drive the qubit
can be.
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Josephson Junction LC Circuit
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Josephson Junction LC Circuit
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Anharmonic Josephson Junction Oscillator

We consider the Josephson junction — a nonlinear, dissipationless circuit
element that forms the backbone in superconducting circuits. By
replacing the linear inductor of the QHO with a Josephson junction,
playing the role of a nonlinear inductor, we can modify the functional
form of the potential energy. The potential energy of the Josephson
junction can be derived from the Josephson relations of the current and

h do

I = I.si , V=—— 14
sin(9), V= (14
resulting in a modified Hamiltonian

H = 4Ecn® — Ejcos(¢) (15)

where Ec = €?/(2Cs), G = G + C, is the total capacitance, including
both shunt capacitance C; and the self-capacitance of the junction Cj,
and E; = I.®y /27 is the Josephson energy, with /. being the critical
current of the junction.

The potential energy takes a cosinusoidal form, which makes the
oscillator anharmonic and the energy spectrum non-degenerate.
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Anharmonic Josephson Junction Oscillator
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Anharmonic mechanic Oscillator

Note that anharmonicity are found in the mechanical case (Morse

potential)
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