PoLITECNICO DI TORINO

Configuration management with Ansible

Francesco Borgogni, Alex Palesandro

January 27, 2021

License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported
License.

You are free:
e to Share: to copy, distribute and transmit the work
e to Remix: to adapt the work

Under the following conditions:

e Attribution: you must attribute the work in the manner specified by the author or licensor
(but not in any way that suggests that they endorse you or your use of the work).

e Noncommercial: you may not use this work for commercial purposes.

e Share Alike: if you alter, transform, or build upon this work, you may distribute the resulting
work only under the same or similar license to this one.

More information on the Creative Commons website.

@080

Acknowledgments

The author would like to thank all the people who contributed to this document.

http://creativecommons.org

Contents

1 Introduction 4
2 Environment setup 5
2.1 Imstall Ansible 5
2.1.1 Initialize SSH e 5

3 Ansible basics: configuration and usage 6
3.1 Execute command line tools 7
3.1.1 Ansible modules: shell vs command 8

3.2 Ansible Playbooks 8
3.3 Ansible Console e 10

4 Advanced features 11
4.1 Ansible variables e 11
4.2 Ansible facts e e 12
4.3 Ansible loops e 12
4.3.1 Simpleloops 13

4.3.2 Hashes e 13

4.4 Ansible conditionals e 14
4.5 Ansible handlers L 15
4.6 Ansible templates 18

5 Ansible in a complex use case 19

1 Introduction

This lab aims at practicing with Ansible, an open source software provisioning, configuration manage-
ment, and application-deployment tool.

First we will learn how to install and configure Ansible. Ansible needs to be installed only on a
master machine: this will manage your nodes using a simple SSH connection.

Later we will study some commands you can execute to perform actions on your managed hosts.
Ansible’s power, however, does not reside in the command line, but in Playbooks, YAML-formatted
files which allows you to specify different tasks. We will see how to write a playbook, its main fields
and their meaning and how to run it, on a single node or a group of them.

Finally we will explore some advanced features Ansible provides us, such as variables, facts (a
particular type of variables), flow execution control (loops and conditionals), handlers (sort of ‘functions’
that are triggered by an event) and Jinja2' templates.

Note: this lab was inspired from the work available on the following websites:
e https://mylabs.readthedocs.io/en/latest/calm/lab6.html

e http://people.redhat.com/grieger/summit2018_labs/getting_started_ansible.
html

e https://www.redhat.com/en/blog/system—administrators—guide—-getting—started—-ans

"https://en.wikipedia.org/wiki/Jinja_ (template_engine)

https://mylabs.readthedocs.io/en/latest/calm/lab6.html
http://people.redhat.com/grieger/summit2018_labs/getting_started_ansible.html
http://people.redhat.com/grieger/summit2018_labs/getting_started_ansible.html
https://www.redhat.com/en/blog/system-administrators-guide-getting-started-ansible-fast
https://en.wikipedia.org/wiki/Jinja_(template_engine)

2 Environment setup

You will have 3 VMs on Crownlabs: one Cloud Client VM will be the master, on which you will
install Ansible; the others will be your managed hosts (you can use, for example, the template ” Cloud
Computing: Ansible”).

<user> should be netlab for every host.

2.1 Install Ansible

Let’s install Ansible. Ansible is an agent-less system: this means that it does not require any
additional software to be installed on the client computers. This is one way that Ansible simplifies the
administration of servers. Any server that has an SSH port exposed can be brought under Ansible’s
configuration umbrella, regardless of what stage it is at in its life cycle.

As said, you need to install Ansible only on your master machine. For an Ubuntu machine the
commands are the following'

sudo apt update

sudo apt install software-properties-common

sudo apt-add-repository —--yes —--update ppa:ansible/ansible
sudo apt install ansible

N.B. Ansible is already installed on the Cloud Client VM in Crownlabs

2.1.1 Initialize SSH

Before going on using Ansible, let us create a new pair of ssh keys to have a passwordless access to all
the hosts we want to configure, which are the hosts that have to be controlled on Ansible.

From the host that you will use to control your infrastructure (the Ansible master machine), you
have to type the following command:

ssh-keygen

And then copy our key on every host using:

ssh—copy-id netlab@<host_IP>

1https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?
extIdCarryOver=true&sc_cid=701£f20000010H7YAAW

https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?extIdCarryOver=true&sc_cid=701f2000001OH7YAAW
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?extIdCarryOver=true&sc_cid=701f2000001OH7YAAW

3 Ansible basics: configuration and usage

Now that you have configured your environment you can start to work with Ansible. First of all you
need to configure Ansible’s hosts: Ansible keeps track of all of the servers that it knows through a hosts
file. We need to set up this file first before we can begin to communicate with our other computers.

sudo nano /etc/ansible/hosts

Note: you can use the program you prefer, with nano you just have to insert the content of your file
and then save it (ctrl + 0) and exit (ctrl + X).

You will see a file that has a lot of example configurations commented out. Keep these examples in
the file to help you learn Ansible’s configuration if you want to implement more complex scenarios in
the future. The hosts file is fairly flexible and can be configured in several different ways. The syntax
we are going to use looks something like this

[<group_name>]
<alias> ansible_ssh_host=<server_ip>

Use the IP you have previously noted. You should have something similar to this

[servers]
nodel ansible_ssh_host=10.0.0.5
node2 ansible_ssh_host=10.0.0.6

Ansible will, by default, try to connect to remote hosts using your current username. If that user does
not exist on the remote system, a connection attempt will result in an error. Let’s specifically tell
Ansible that it should connect to servers in the servers group with a user. Create a directory in the
Ansible configuration structure called group_vars.

sudo mkdir /etc/ansible/group_vars

Within this folder, we can create YAML-formatted files for each group we want to configure:

sudo nano /etc/ansible/group_vars/servers

Add this code to the file:

ansible_ssh_user: <user>
ansible_python_interpreter: /usr/bin/python3
ansible_ssh_private_key_file: /home/netlab/.ssh/id_rsa

<user> should be netlab. The second line of the file specifies the path to the python interpreter: if
the default variable points to a version 2 interpreter, an annoying warning is displayed every time you
type a command. If you have problems you can delete this line and try with the default interpreter.
The third one specifies the key . pem file for the ssh connection.

Save and close this file when you are finished. Now Ansible will always use the specified user
for the servers group, regardless of the current user. If you want to specify configuration de-
tails for every machine, regardless of group association, you can put those details in a file at
/etc/ansible/group._vars/all. Individual hosts can be configured by creating files under a
directory at /etc/ansible/host_vars.

3.1 Execute command line tools

Now that we have our hosts set up and enough configuration details to allow us to successfully connect
to our hosts, we can try out our very first ansible command!. Ping all the servers you configured by

typing:

ansible -m ping all

You should see something like this

nodel | SUCCESS => {
"changed": false,
"ping": "pong"

}

node2 | SUCCESS => {
"changed": false,
"ping": "pong"

}

You can also ping a group (servers) or a single or multiple hosts by separating them with a colon:

ansible -m ping servers

ansible -m ping nodel:node2

The —m option allows to specify the module to execute: if not specified, the default one is command.
There are lots and lots of modules?, for example command and shell are used to execute shell
commands on the target machine?:

ansible -m shell -a 'ls -la' nodel # execute 1ls on nodel

ansible -a 'ip addr' all # show net information of all nodes

The —a option specifies the module arguments.

By now, you should have your master configured to communicate with the servers that you would
like to control; with the ansible command you can execute simple tasks remotely. Although this is
useful, we have not covered the most powerful feature of Ansible: Playbooks. You have configured a
great foundation for working with your servers through Ansible, so your next step is to learn how to
use Playbooks to do the heavy lifting for you.

1https://docs.ansible.com/ansible/latest/user_guide/command_line_tools.html
thtps://docs.ansible.com/ansible/latest/modules/modules_by_category.html
3https://linux.die.net/man/8/ip

https://docs.ansible.com/ansible/latest/user_guide/command_line_tools.html
https://docs.ansible.com/ansible/latest/modules/modules_by_category.html
https://linux.die.net/man/8/ip

3.1.1 Ansible modules: shell vs command

In the most use cases shell and command modules lead to the same goal. The main differences
between them are

e With the command module, the command will be executed without being proceeded through
a shell. As a consequence some variables like SHOME are not available. Furthermore, stream
operations like <, >, | and & will not work.

e The shell module runs a command through a shell, by default /bin/sh. This can be changed
with the option executable. Piping and redirection are here available.

e The command module is more secure, because it will not be affected by the user’s environment.

Note: before the usage of both modules you should check if there is not a more specific Ansible module
for that task. It is always better to use a module instead of running a raw command, because the
modules are designed to be idempotent and fulfill other standards like exception handling.

As an example try these simple commands which redirect the output to a file

ansible -m shell -a 'ls -la > file' nodel

ansible -m command -a 'ls —-la > file' nodel

As you can see, the former succeeds, the latter fails.

3.2 Ansible Playbooks

Playbooks are essentially sets of instructions (plays) that you send to run on a single target or groups of
targets (hosts). They are written in YAML?®, a human-readable data serialization language, commonly
used for configuration files. Playbooks start with the YAML three dashes (-—-) followed by:

e name: the name of the ‘play’, good for keeping the Playbooks readable

e hosts: identifies the target for Ansible to run against

e become: acquire super-user privileges before performing the listed tasks

e tasks: the operations to be performed by invoking Ansible modules with the necessary options.
Let’s try to create a playbook to install and run nginx web server on one of our managed hosts.

Go to /etc/ansible folder and create a new file (name it as you prefer, e.g. nginz.yaml). Open it
and paste this simple playbook

— name: Install nginx
hosts: nodel
become: yes

tasks:
— name: Install nginx
apt:
name: nginx
state: present

4https://blog.confirm.ch/ansible—modules—shell—vs—command/
Shttps://en.wikipedia.org/wiki/YAML

https://blog.confirm.ch/ansible-modules-shell-vs-command/
https://en.wikipedia.org/wiki/YAML

— name: Start nginx
service:
name: nginx
state: started

This code snipped is attached to the PDF file as “snippets/nginx.yaml”

Warning: YAML files strongly rely on indentation for their structure. Hence, do not copy the previous
snippet directly from the PDF file, since it will totally scramble the indentation. Moreover, before
moving on, verify (and fix, if necessary) the file layout using an editor of your choice.

Now from the command line move to the ansible folder and execute the playbook

ansible-playbook nginx.yaml

When the tasks are completed, you can check that nginx is running on the other node by opening the
browser and navigate to web server ip address (e.g. 10.0.0.5); another option is to use one of these
commands (the first one only checks if the connection to the url is ok)

ansible localhost -m uri —-a "url=http://<nodel_ip>"

curl http://<nodel_ip>

You can change the nginx default installation page by adding the following task to the playbook
(obviously you need to have created an index.html file with some content in your working directory,
here /etc/ansible)

— name: Insert index page
copy:
src: /etc/ansible/index.html
dest: /var/www/html/index.html

If you rerun the playbook the output should look like as follows:

PLAY RECAP s,k rxkkkhhhkkkhkhhkhkkkkhhhkhkkkhkhhkhkkkhhhkhkkkkhhhkkkkkhhkhkkkkhkhhkkkkkhkkkk k& Kk kK
nodel : ok=3 changed=0 unreachable=0 failed=0 skipped=0
rescued=0 ignored=0

This tells you that the nginx package was already installed, so nothing was changed. This is another
powerful funcionalities of playbooks: they are idempotent. When dealing with complicated playbooks
across many hosts, being able to identify the hosts that were different becomes very useful. For example,
if you notice a host always needs a specific config updated, then there is likely a user or process on
that host which is changing it. Without idempotence, this may never be noticed.

This was just a very short presentation of playbooks, but there are lots and lots of other features
they provide. In the following section we will see some of them, for a complete guide visit the Ansible
documentation®.

Shttps://docs.ansible.com/ansible/latest/user_guide/playbooks.html

https://docs.ansible.com/ansible/latest/user_guide/playbooks.html

3.3 Ansible Console

Ansible offers a read-eval-print loop (REPL) language’ for running ad-hoc tasks against a chosen
inventory® (an inventory is a list of nodes, in brief the hosts file you have written in section 3). This
environment is called Ansible console. You can enter it by typing:

ansible-console [-1i <inventory>]

The -1 option allows you to specify an inventory host path (different from the hosts file you wrote
previously) or comma separated host list; if not specified, by default you will connect to all the
machines.

Once entered in Ansible console you can use the normal Ansible modules. For example if you want
to get the date on all the hosts, simply type

shell date

Remember: if you do not specify an Ansible module, command, the default one, will be used.
Therefore, you could use the previous command without shell and you would have the same result.

If you press <tab><tab> you will see the (very long) list of modules you can use. A very useful
one is cd which allows you to navigate through your groups or hosts: for example you could need to
first execute a command on all your machines, then something specific only on the servers group (cd
servers), afterwards something else only on node! (cd nodel).

Warning: the cd command you have just used is not the Linux cd one you use to move between
folders, even if its behaviour is pretty similar.

"A read eval print loop (REPL), also termed an interactive toplevel or language shell, is a simple, interactive computer
programming environment that takes single user inputs (i.e., single expressions), evaluates (executes) them, and returns
the result to the user. More information at https://en.wikipedia.org/wiki/Read-eval—-print_loop

8https://docs.ansible.com/ansible/latest/user_guide/basic_concepts.html

10

https://en.wikipedia.org/wiki/Read-eval-print_loop
https://docs.ansible.com/ansible/latest/user_guide/basic_concepts.html

4 Advanced features

What we have seen so far was nice, but the real power of Ansible is to apply the same set of tasks
reliably to many hosts. First, try to extend the previous playbook (section 3.2) to run on 2 VM: this is
quite simple since you have already configured different servers in your hosts file.

You just have to change the hosts field in the playbook:

hosts: servers
(or)
hosts: nodel:node2

Now let’s see some advanced features of Ansible.

4.1 Ansible variables

Ansible supports variables to store values that can be used in Playbooks. Variables can be defined in a
variety of places and have a clear precedence. Ansible substitutes the variable with its value when a
task is executed. Variables are referenced in Playbooks by placing the variable name in double curly
braces.

Here comes a variable {{ variablel }}

The recommended practice is to define variables in files located in two directories named host_vars
and group-vars: we have already defined variables for the group servers (in chapter 3), now repeat the
previous steps to create host-specific variables.

Note: host variables take precedence over group variables.

Once you have created the host _vars directory, you need to create a file within it for one of
your nodes; the file must be named as the node name (e.g. nodel). Inside it, define a variable
named stage and give it the value prod (write stage: prod). Define the same variable in the
group_vars/servers file and give it the value dev (write stage: dev below the ansible_x
variables).

Now create two index files: inder_dev.html and indez_prod.html and insert the following content

<body>
<hl1>This is a production webserver, take care!</hl>
</body>
This code snipped is attached to the PDF file as “snippets/index_prod.html”
<body>
<hl1>This is a development webserver, have fun!</hl>
</body>

This code snipped is attached to the PDF file as “snippets/index_dev.html”

11

Modify the insert index page task in the playbook

— name: Insert index page
copy:
src: index_{{ stage }}.html
dest: /var/www/html/index.html

Rerun the playbook and check the two nodes: the index page should be different.

4.2 Ansible facts

Ansible facts are variables that are automatically discovered by Ansible from a managed host. Facts
are pulled by the setup module and contain useful information stored into variables that administrators
can reuse.

To get the complete list of facts Ansible collects by default run

ansible nodel -m setup

This will return a lot of information, so you can use filters to limit the output to certain facts (the
following one returns memory related facts)

ansible nodel -m setup -a 'filter=ansible_x_mb'

Exercise: try to retrieve the linux distribution and kernel version of all your managed nodes (Suggestion:
pass the output of setup module to grep command).

Facts can be used in a Playbook like variables, using the proper naming, of course. Create this
Playbook as facts.yml and run it

— name: Output facts within a playbook

hosts: all

tasks:

— name: Prints Ansible facts
debug:

msg: The default IPv4 address of {{ ansible_fqgdn }} is {{ ansible_default_ipv4.
address }}

This code snipped is attached to the PDF file as “snippets/facts.yaml”

4.3 Ansible loops

Often you’ll want to do many things in one task, such as
e create a lot of users
e repeat a polling step until a certain result is reached

Ansible supports loops to iterate over a set of values, preventing administrators from writing repetitive
tasks that use the same module. Ansible supports three main types of loops: simple loops, list of
hashes and nested loops'. In this lab we will have a quick look at the first two.

'https://docs.ansible.com/ansible/latest/user_guide/playbooks_loops.html

12

https://docs.ansible.com/ansible/latest/user_guide/playbooks_loops.html

4.3.1 Simple loops

Simple loops are a list of items that Ansible iterates over. They are defined by providing a list of items
to the loop keyword. Create the following Playbook as simple_loop.yml and run it

— name: Simple loop demo
hosts: nodel
tasks:
- name: Ensure that the nginx and sshd services are started
service:
name: "{{ item }}"
state: started
loop:
- nginx
- sshd

This code snipped is attached to the PDF file as “snippets/simple_loop.yaml”

In the following example the array is embedded in the playbook and called check_services. Create
this Playbook as simple_loop2.yml and run it: the output should be the same.

- name: Simple loop demo 2
hosts: nodel
vars:
check_services:
- nginx
- sshd
tasks:
— name: Check if service is started

service:
name: "{{item}}"
state: started
loop: "{{check_services}}"
This code snipped is attached to the PDF file as “snippets/simple_loopZ2.yaml”
4.3.2 Hashes

Ansible allows also to loop over a list of hashes: this is particularly useful when working with more
complex data. The following Playbook shows how a list of hashes with key-value pairs is passed to the
user module?, a module to manage user accounts and user attributes. Create as hash_loop.yml
and run it

— name: Hash demo

hosts: nodel

become: yes

tasks:

— name: Create users from hash
user:

name: "{{ item.name }}"
state: present
groups: "{{ item.groups }}"

thtps://docs.ansible.com/ansible/latest/modules/user_module.html#userfmodule

13

https://docs.ansible.com/ansible/latest/modules/user_module.html#user-module

loop:
- { name: 'jane', groups: 'wheel'}
- { name: 'joe', groups: 'root'}

This code snipped is attached to the PDF file as “snippets/hash_loop.yaml”

User jane should not be created, since the group wheel does not exist; to check if user joe has been
created you can simply run this command

ansible -a 'getent passwd' nodel | grep joe

To remove the user you only need to modify and add these two lines in the previous playbook (under
the user module)

state: absent
remove: yes

4.4 Ansible conditionals

Ansible can use conditionals to execute tasks or plays when certain conditions are met. To implement
a conditional, the when statement must be used, followed by the condition to test. The condition is
expressed using one of the available operators, for example the standard comparison ones:

== equality
= inequality
> greater than
>= | greater than or equal
< less than
<= less than or equal

As an example you would like to install an FTP server, but only on hosts that are not in production
because the protocol is not secure (remember in section 4.1 we defined the stage variable). Create
this Playbook as ftp.yml, run it and examine the output

— name: Install insecure FTP server as long as not in production
hosts: nodel:node2
become: yes
tasks:
- name: Install FTP server if not in production
apt:
name: vsftpd
state: latest
when: stage != "prod"

This code snipped is attached to the PDF file as “snippets/ftp.yaml”

Important

e in a when statement, facts and variables are not enclosed in double curly braces like you would
do elsewhere in the playbook

e the when statement must be placed “outside” of the module by being indented at the top level
of the task.

14

Expected outcome: the task is skipped on nodel because it has the stage variable set to prod
and succeeds on node?2 which has stage = dev.

Exercise: write a playbook that installs MariaDB only if the host has more than 3 GB of RAM.

Find the fact (4.2) for memtotal in MB (look at the ad-hoc command output and feel free to use
grep). Use this Playbook as a template

- name: MariaDB server installation

hosts: all
become: yes
tasks:

- name: Install latest MariaDB server when host RAM greater 3 GB
yum:
name: mariadb-server
state: latest
when: <fact> <comparison_operator> <value>

This code snipped is attached to the PDF file as “snippets/mariadb.yaml”

Note: the VMs from Openstack should have less than 2 GB of ram, therefore the above playbook
should be skipped in all your machines. If you want to actually install MariaDB, you can modify the
value of the requested ram or the hosts field.

4.5 Ansible handlers

Sometimes when a task makes a change to the system, a further task may need to be run. For example,
a change to a service’s configuration file may then require the service to be reloaded so that the changed
configuration takes effect.

Here Ansible’s handlers come into play. Handlers can be seen as inactive tasks that only get triggered
when explicitly invoked using the notify statement.
As a an example, let’s write a Playbook that:

e modifies nginx’s configuration file (/etc/nginx/sites—available/default) on all hosts
in the servers group

e restarts nginx when the file has changed

Create a file named default in your working directory and copy the following content in it.

H

You should look at the following URL's in order to grasp a solid understanding
of Nginx configuration files in order to fully unleash the power of Nginx.
https://www.nginx.com/resources/wiki/start/
https://www.nginx.com/resources/wiki/start/topics/tutorials/config pitfalls/
https://wiki.debian.org/Nginx/DirectoryStructure

In most cases, administrators will remove this file from sites-enabled/ and
leave it as reference inside of sites—available where it will continue to be
updated by the nginx packaging team.

This file will automatically load configuration files provided by other
applications, such as Drupal or Wordpress. These applications will be made
available underneath a path with that package name, such as /drupal8.

HoH HHE H W HE KR W HE KR R R R R

15

#
Please see /usr/share/doc/nginx-doc/examples/ for more detailed examples.

##

Default server configuration

#

server {
listen 80 default_server;
listen [::]:80 default_server;

SSL configuration

listen 443 ssl default_server;
listen [::]:443 ssl default_server;

Note: You should disable gzip for SSL traffic.
See: https://bugs.debian.org/773332

Read up on ssl_ciphers to ensure a secure configuration.
See: https://bugs.debian.org/765782

Self signed certs generated by the ssl-cert package
Don't use them in a production server!

R P P R R SRR S"

include snippets/snakeoil.conf;
root /var/www/html;

Add index.php to the list if you are using PHP
index index.html index.htm index.nginx-debian.html;

server_name _;

location / {
First attempt to serve request as file, then
as directory, then fall back to displaying a 404.
try_files Suri Suri/ =404;

pass PHP scripts to FastCGI server
#
#location ~ \.php$S {

include snippets/fastcgi-php.conf;

#
#
With php-fpm (or other unix sockets):

fastcgi_pass unix:/var/run/php/php7.0-fpm.sock;
With php-cgi (or other tcp sockets):

fastcgi_pass 127.0.0.1:9000;

#

deny access to .htaccess files, 1if Apache's document root
concurs with nginx's one

#

#location =~ /\.ht {

deny all;

#}

Virtual Host configuration for example.com

16

#
You can move that to a different file under sites-available/ and symlink that
to sites—enabled/ to enable it.
#
#server {
listen 80;
listen [::]:80;

server__name example .comy;

root /var/www/example.com;

#
#
#
#
#
index index.html;
#
#
#
#
#

location / {
try files Suri Suri/ =404;
}

~—

This code snipped is attached to the PDF file as “snippets/default”

Now create the playbook nginx_conf.yaml

- name: Manage nginx configuration
hosts: nodel
become: yes
tasks:
— name: Copy Nginx configuration file
copy:
src: default
dest: /etc/nginx/sites—available/default
notify:
- restart_nginx
handlers:
— name: restart_nginx
service:
name: nginx
state: restarted

This code snipped is attached to the PDF file as “snippets/nginx_conf.yaml”

The notify section calls the handler only when the copy task changed the file. The handlers
section defines a task that is only run on notification.

Run the Playbook. We didn’t change anything in the file yet so there should not be any changed lines
in the output and of course the handler shouldn’t have been fired.
Now change the 1isten 80 line in default file to:

listen 8080

Run the Playbook again: now the output should be a lot more interesting:
e default should have been copied over
e the handler should have restarted nginx

Nginx should now listen on port 8080; you can easily verify it by using the commands suggested in the
previous section (3.2).

17

4.6 Ansible templates

Ansible uses Jinja2 templating to modify files before they are distributed to managed hosts; Jinja2 is
one of the most used template engines for Python?.

When a template for a file has been created, it can be deployed to the managed hosts using the
template module, which supports the transfer of a local file from the control node to the managed
hosts. As an example of using templates you will customize the motd* (the message shown by Ubuntu
at login) file to contain host-specific data.

In the /etc/ansible directory create the template file motd_facts.j2

Welcome to {{ ansible_hostname }}.
{{ ansible_distribution }} {{ ansible_distribution_version}}
deployed on {{ ansible_architecture }} architecture.

This code snipped is attached to the PDF file as “snippets/motd_facts.j2”

Now create and run the motd_facts.yml playbook

- name: Fill motd file with host data

hosts: nodel

become: yes

tasks:

- template:

src: motd_facts.j2
dest: /etc/motd
owner: root
group: root
mode: 0644

This code snipped is attached to the PDF file as “snippets/motd_facts.yaml”

To understand what has changed login to nodel via SSH and check the ‘motto of the day’ message:
you should see how Ansible replaces the variables with the facts it discovered from the system.

Exercise: change the template to use the FQDN (Fully Qualified Domain Name) hostname
(Suggestion: use ansible facts (4.2)).

Shttps://palletsprojects.com/p/jinja/
4https://en.wikipedia.org/wiki/Motd_(Unix)

18

https://palletsprojects.com/p/jinja/
https://en.wikipedia.org/wiki/Motd_(Unix)

5 Ansible in a complex use case

Now that we have explored different features Ansible gives us, we can try to build a more complex
playbook that setups a complex service that includes a firewall, a web service, a database service, and
the associated loggers.

First of all, rename your managed hosts so that their name are significant: we need a webserver, a
dbserver and a logserver. We need 3 services, but we only have 2 managed hosts: in order to run the
following playbook you can

e use also the master machine, adding it to the hosts file! (in the footnote you can find a guide to
do it)

e use one machine for two services (e.g. webserver + dbserver)

In the following we will assume you have 3 entries in your hosts file, something similar to this

[servers]

webserver ansible_ssh _host=10.0.0.5
dbserver ansible_ssh_host=10.0.0.5
logserver ansible_ssh_host=10.0.0.6

We want to create a playbook to:
e set firewall rules on our servers
e install and start nginx on webserver
e install MariaDB on dbserver
e enable rsyslog on logserver to receive messages from the other servers

In the following we will guide you in writing it; you can try by yourself if you prefer and then check
the solution.

First let’s create a playbook (firewalld.yaml) to install and start firewalld service?. The default
firewall manager in ubuntu is ufw® so we also need to disable it.

- name: Install firewalld

hosts: servers

become: true

tasks:

— name: Install firewalld
apt:

name: firewalld
state: present

- name: Start firewalld

service:

"https://www.middlewareinventory.com/blog/run-ansible-playbook-locally/
?https://en.wikipedia.org/wiki/Firewalld
Shttps://en.wikipedia.org/wiki/Uncomplicated_Firewall

19

https://www.middlewareinventory.com/blog/run-ansible-playbook-locally/
https://en.wikipedia.org/wiki/Firewalld
https://en.wikipedia.org/wiki/Uncomplicated_Firewall

name: firewalld
state: started

- name: Disable ufw
service:
name: ufw
state: stopped

As you can see, this playbook needs to be run on all the servers group, but our goal is to write a
playbook with different plays executed on different hosts. Ansible, in order to write reusable playbooks,

This code snipped is attached to the PDF file as “snippets/firewalld.yaml”

allows us to import a playbook inside another?.

Furthermore, we can also include single tasks: to use this feature we need to write a yaml file with

only a list of tasks to execute, and then use the include_tasks module in the main playbook.

Try to write a file (nginxz_tasks.yaml) with only the tasks to install and start nginx: you should have

a file like this

— name: Install nginx
apt:
name: nginx
state: present

- name: Start nginx
service:
name: nginx
state: started

Now we can write our main playbook in which we will also use the importing feature and some new

modules

Note: you have to insert the ip address of your logserver in PLAY 5

- hosts: webserver
become: yes
tasks:

firewalld:
service: http
immediate: true
permanent: true
state: enabled

file:

PLAY 1: firewalld on all servers
— name: Install firewalld
import_playbook: firewalld.yaml

PLAY 2: nginx on webserver

— name: Install nginx
include_tasks: nginx_task.yaml

— name: open firewall port

- name: set content directory

path: /var/www/html

by importing this playbook, firewalld is
installed on all our servers at the beginning

in order to reuse code we can include
the tasks we have already written

“https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_includes.html

20

https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_includes.html

state: directory
mode: U=rwx,g=rwx, 0O=rx,g+s

- name: create default page content
copy:
content: "Welcome to {{ ansible_fgdn }} on {{ ansible_default_ipv4.address
}I\n"
dest: /var/www/html/index.html
mode: u=rw, g=rw, o=r

PLAY 3: MariaDB on dbserver
- hosts: dbserver
become: yes
tasks:
- name: install MariaDB server
apt:
name: mariadb-server
state: latest

- name: enable and start MariaDB server
service:
name: mariadb
enabled: yes
state: started

PLAY 4: rsyslog on logserver
- hosts: logserver
become: yes

tasks:
- name: configure rsyslog remote log reception over udp
lineinfile: # a module to change a single line in a file

path: /etc/rsyslog.conf

line: "{{ item }}"

state: present
with_items:

- 'SModLoad imudp'

- 'S$UDPServerRun 514"
notify:

- restart rsyslogd

- name: open firewall port
firewalld:
port: 514/udp
immediate: true
permanent: true
state: enabled

handlers:
- name: restart rsyslogd
service:

name: rsyslog
state: restarted

#PLAY 5: rsyslog config on webserver and dbserver
— hosts: webserver:dbserver
become: yes
tasks:
- name: configure rsyslog
lineinfile:
path: /etc/rsyslog.conf

21

line: 'x.* @<logserver_ip>:514"
state: present

notify:
- restart rsyslogd

handlers:
- name: restart rsyslogd
service:

name: rsyslog
state: restarted

This code snipped is attached to the PDF file as “snippets/service_chain.yaml”

This playbook is quite long and may be difficult to understand, therefore it has been split into 5 plays

e PLAY 1: executed on all servers, it installs firewalld by importing the playbook we wrote
before

e PLAY 2: executed on webserver, it installs nginx, opens firewall ports so that http traffic can
pass and creates a custom index page

e PLAY 3: executed on dbserver, it installs and enable mariadb

e PLAY 4: executed on logserver, it configures rsyslog® using lineinfile% module and opening
firewall ports. After having modified the configuration file it restart rsyslog service by notifying
a handler

e PLAY 5: executed on webserver and dbserver, it configures them so that log messages are sent
to logserver. Modify with your logserver ip

You can verify the webserver hosts using curl as you have already done (section 3.2) and remote
logging using the 1logger command on webserver and dbserver hosts and afterwards check logserver

ansible -m command -a 'logger hurray it works' webserver:dbserver

ansible -m command -a "grep 'hurray it works$' /var/log/syslog" logserver

Shttps://en.wikipedia.org/wiki/Rsyslog
Shttps://docs.ansible.com/ansible/latest/modules/lineinfile_module.html

22

https://en.wikipedia.org/wiki/Rsyslog
https://docs.ansible.com/ansible/latest/modules/lineinfile_module.html

	Introduction
	Environment setup
	Install Ansible
	Initialize SSH

	Ansible basics: configuration and usage
	Execute command line tools
	Ansible modules: shell vs command

	Ansible Playbooks
	Ansible Console

	Advanced features
	Ansible variables
	Ansible facts
	Ansible loops
	Simple loops
	Hashes

	Ansible conditionals
	Ansible handlers
	Ansible templates

	Ansible in a complex use case

- name: Install nginx
 hosts: node1
 become: yes

 tasks:
 - name: Install nginx
 apt:
 name: nginx
 state: present

 - name: Start nginx
 service:
 name: nginx
 state: started

 This is a production webserver, take care!

 This is a development webserver, have fun!

- name: Output facts within a playbook
 hosts: all
 tasks:
 - name: Prints Ansible facts
 debug:
 msg: The default IPv4 address of {{ ansible_fqdn }} is {{ ansible_default_ipv4.address }}

- name: Simple loop demo
 hosts: node1
 tasks:
 - name: Ensure that the nginx and sshd services are started
 service:
 name: "{{ item }}"
 state: started
 loop:
 - nginx
 - sshd

- name: Simple loop demo 2
 hosts: node1
 vars:
 check_services:
 - nginx
 - sshd
 tasks:
 - name: Check if service is started
 service:
 name: "{{item}}"
 state: started
 loop: "{{check_services}}"

- name: Hash demo
 hosts: node1
 become: yes
 tasks:
 - name: Create users from hash
 user:
 name: "{{ item.name }}"
 state: present
 groups: "{{ item.groups }}"
 loop:
 - { name: 'jane', groups: 'wheel'}
 - { name: 'joe', groups: 'root'}

- name: Install insecure FTP server as long as not in production
 hosts: node1:node2
 become: yes
 tasks:
 - name: Install FTP server if not in production
 apt:
 name: vsftpd
 state: latest
 when: stage != "prod"

- name: MariaDB server installation
 hosts: all
 become: yes
 tasks:
 - name: Install latest MariaDB server when host RAM greater 3 GB
 yum:
 name: mariadb-server
 state: latest
 when: <fact> <comparison_operator> <value>

##
You should look at the following URL's in order to grasp a solid understanding
of Nginx configuration files in order to fully unleash the power of Nginx.
https://www.nginx.com/resources/wiki/start/
https://www.nginx.com/resources/wiki/start/topics/tutorials/config_pitfalls/
https://wiki.debian.org/Nginx/DirectoryStructure
#
In most cases, administrators will remove this file from sites-enabled/ and
leave it as reference inside of sites-available where it will continue to be
updated by the nginx packaging team.
#
This file will automatically load configuration files provided by other
applications, such as Drupal or Wordpress. These applications will be made
available underneath a path with that package name, such as /drupal8.
#
Please see /usr/share/doc/nginx-doc/examples/ for more detailed examples.
##

Default server configuration
#
server {
	listen 80 default_server;
	listen [::]:80 default_server;

	# SSL configuration
	#
	# listen 443 ssl default_server;
	# listen [::]:443 ssl default_server;
	#
	# Note: You should disable gzip for SSL traffic.
	# See: https://bugs.debian.org/773332
	#
	# Read up on ssl_ciphers to ensure a secure configuration.
	# See: https://bugs.debian.org/765782
	#
	# Self signed certs generated by the ssl-cert package
	# Don't use them in a production server!
	#
	# include snippets/snakeoil.conf;

	root /var/www/html;

	# Add index.php to the list if you are using PHP
	index index.html index.htm index.nginx-debian.html;

	server_name _;

	location / {
		# First attempt to serve request as file, then
		# as directory, then fall back to displaying a 404.
		try_files $uri $uri/ =404;
	}

	# pass PHP scripts to FastCGI server
	#
	#location ~ \.php$ {
	#	include snippets/fastcgi-php.conf;
	#
	#	# With php-fpm (or other unix sockets):
	#	fastcgi_pass unix:/var/run/php/php7.0-fpm.sock;
	#	# With php-cgi (or other tcp sockets):
	#	fastcgi_pass 127.0.0.1:9000;
	#}

	# deny access to .htaccess files, if Apache's document root
	# concurs with nginx's one
	#
	#location ~ /\.ht {
	#	deny all;
	#}
}

Virtual Host configuration for example.com
#
You can move that to a different file under sites-available/ and symlink that
to sites-enabled/ to enable it.
#
#server {
#	listen 80;
#	listen [::]:80;
#
#	server_name example.com;
#
#	root /var/www/example.com;
#	index index.html;
#
#	location / {
#		try_files $uri $uri/ =404;
#	}
#}

- name: Manage nginx configuration
 hosts: node1
 become: yes
 tasks:
 - name: Copy Nginx configuration file
 copy:
 src: default
 dest: /etc/nginx/sites-available/default
 notify:
 - restart_nginx
 handlers:
 - name: restart_nginx
 service:
 name: nginx
 state: restarted

Welcome to {{ ansible_hostname }}.
{{ ansible_distribution }} {{ ansible_distribution_version}}
deployed on {{ ansible_architecture }} architecture.

 - name: Fill motd file with host data
 hosts: node1
 become: yes
 tasks:
 - template:
 src: motd_facts.j2
 dest: /etc/motd
 owner: root
 group: root
 mode: 0644

- name: Install firewalld
 hosts: servers
 become: true
 tasks:
 - name: Install firewalld
 apt:
 name: firewalld
 state: present

 - name: Start firewalld
 service:
 name: firewalld
 state: started

 - name: Disable ufw
 service:
 name: ufw
 state: stopped

PLAY 1: firewalld on all servers
- name: Install firewalld # by importing this playbook, firewalld is
 import_playbook: firewalld.yaml # installed on all our servers at the beginning

PLAY 2: nginx on webserver
- hosts: webserver
 become: yes
 tasks:
 - name: Install nginx
 include_tasks: nginx_task.yaml # in order to reuse code we can include
 # the tasks we have already written

 - name: open firewall port
 firewalld:
 service: http
 immediate: true
 permanent: true
 state: enabled

 - name: set content directory
 file:
 path: /var/www/html
 state: directory
 mode: u=rwx,g=rwx,o=rx,g+s

 - name: create default page content
 copy:
 content: "Welcome to {{ ansible_fqdn }} on {{ ansible_default_ipv4.address }}\n"
 dest: /var/www/html/index.html
 mode: u=rw,g=rw,o=r

PLAY 3: MariaDB on dbserver
- hosts: dbserver
 become: yes
 tasks:
 - name: install MariaDB server
 apt:
 name: mariadb-server
 state: latest

 - name: enable and start MariaDB server
 service:
 name: mariadb
 enabled: yes
 state: started

PLAY 4: rsyslog on logserver
- hosts: logserver
 become: yes
 tasks:
 - name: configure rsyslog remote log reception over udp
 lineinfile: # a module to change a single line in a file
 path: /etc/rsyslog.conf
 line: "{{ item }}"
 state: present
 with_items:
 - '$ModLoad imudp'
 - '$UDPServerRun 514'
 notify:
 - restart rsyslogd

 - name: open firewall port
 firewalld:
 port: 514/udp
 immediate: true
 permanent: true
 state: enabled

 handlers:
 - name: restart rsyslogd
 service:
 name: rsyslog
 state: restarted

#PLAY 5: rsyslog config on webserver and dbserver
- hosts: webserver:dbserver
 become: yes
 tasks:
 - name: configure rsyslog
 lineinfile:
 path: /etc/rsyslog.conf
 line: '*.* @<logserver_ip>:514'
 state: present
 notify:
 - restart rsyslogd

 handlers:
 - name: restart rsyslogd
 service:
 name: rsyslog
 state: restarted

