Memory Devices

Paolo PRINETTO

Paolo.Prinetto@polito.it

Elena Ioana VATAJELU

Elena.Vatajelu@imag.fr

This presentation is licensed under the Creative Commons BY-NC License

To view a copy of the license, visit: http://creativecommons.org/licenses/by-nc/3.0/legalcode

Disclaimer

- We disclaim any warranties or representations as to the accuracy or completeness of this material.
- Materials are provided "as is" without warranty of any kind, either express or implied, including without limitation, warranties of merchantability, fitness for a particular purpose, and non-infringement.
- Under no circumstances shall we be liable for any loss, damage, liability or expense incurred or suffered which is claimed to have resulted from use of this material.

Outline

- Introduction
- Memory Organization
- Memory Characteristics
- Access mechanisms
- Where we are coming from
- External vs Internal Architectures
- Memory Hierarchy
- Memories with ECCs

Outline

Introduction

Memory Organization

- Memory Characteristics
- Access mechanisms
- Where we are coming from
- External vs Internal Architectures
- Memory Hierarchy
- Memories with ECCs

Computer Memories

Physical devices used to store programs and data on a temporary or permanent basis in digital systems

Memory organization

- Memories are composed of cells (each cell stores 1 bit)
- Cells are organized in words
- From the user viewpoint, a word is the information quantum that can be exchanged with the memory

Memory operations

- On each word, data can be
 - Written
 - Read

• Memories are the only sequential devices without a reset signal

Outline

Introduction

- Memory Organization
- Memory Characteristics
- Access mechanisms
- Where we are coming from
- External vs Internal Architectures
- Memory Hierarchy
- Memories with ECCs

Cell Size (F²)

F = feature size = half the distance between like points in an array of minimum width and minimum spaced metal1

Memories Today

	SRAM	DRAM	NOR-Flash	NAND-Flash
Cell Size	120F ²	4-6F ²	10 F ²	4-5 F ²
Read Latency	<1ns	20ns	5,000ns	25,000ns
Write Latency	<1ns	20ns	1,000,000ns	200,000ns
Static power	YES	YES	NO	NO
Endurance	> 10 ¹⁵	> 10 ¹⁵	10 ⁴	10 ⁴
Non-volatility	NO	NO	YES	YES

Cell Size (F²)
Scalability

The maximum extent to which the Cell Size can be shrunk

- Cell Size (F²)
- Scalability
- Access Time

The time required to perform a read or a write operation

Memories Today

	SRAM	DRAM	NOR-Flash	NAND-Flash
Cell Size	120F ²	4-6F ²	10 F ²	4-5 F ²
Read Latency	<1ns	20ns	5,000ns	25,000ns
Write Latency	<1ns	20ns	1,000,000ns	200,000ns
Static power	YES	YES	NO	NO
Endurance	> 10 ¹⁵	> 10 ¹⁵	10 ⁴	10 ⁴
Non-volatility	NO	NO	YES	YES

- Cell Size (F²)
- Scalability
- Access Time
- Power Consumption

- Cell Size (F²)
- Scalability
- Access Time
- Power Consumption
- Endurance

The number of cycles the memory operates correctly

Memories Today

	SRAM	DRAM	NOR-Flash	NAND-Flash
Cell Size	120F ²	4-6F ²	10 F ²	4-5 F ²
Read Latency	<1ns	20ns	5,000ns	25,000ns
Write Latency	<1ns	20ns	1,000,000ns	200,000ns
Static power	YES	YES	NO	NO
Endurance	> 10 ¹⁵	> 10 ¹⁵	10 ⁴	104
Non-volatility	NO	NO	YES	YES

- Cell Size (F²)
- Scalability
- Access Time
- Power Consumption
- Endurance
- Data Reliability

The ability to preserve data under disturbances

- Cell Size (F²)
- Scalability
- Access Time
- Power Consumption
- Endurance
- Data Reliability
- Volatility

The ability to preserve data when power is removed

Memories Today

SRAM	DRAM	NOR-Flash	NAND-Flash
120F ²	4-6F ²	10 F ²	4-5 F ²
<1ns	20ns	5,000ns	25,000ns
<1ns	20ns	1,000,000ns	200,000ns
YES	YES	NO	NO
> 10 ¹⁵	> 10 ¹⁵	10 ⁴	10 ⁴
NO	NO	YES	YES
	SRAM 120F ² <1ns <1ns YES >10 ¹⁵	SRAM DRAM 120F ² 4-6F ² <1ns 20ns <1ns 20ns ×1ns 20ns ×1ns 20ns ×10 ¹⁵ >10 ¹⁵ NO NO	SRAM DRAM NOR-Flash $120F^2$ $4-6F^2$ $10F^2$ $<1ns$ $20ns$ $5,000ns$ $<1ns$ $20ns$ $1,000,000ns$ $<1ns$ $20ns$ $1,000,000ns$ YES YES NO $>10^{15}$ $>10^{15}$ 10^4 NO NO YES

- Cell Size (F²)
- Scalability
- Access Time
- Power Consumption
- Endurance
- Data Reliability
- Volatility
- Fabrication Cost

- Cell Size (F²)
- Scalability
- Access Time
- Power Consumption
- Endurance
- Data Reliability
- Volatility
- Fabrication Cost
- Access mechanism

- Cell Size (F²)
- Scalability
- Access Time
- Power Consumption
- Endurance
- Data Reliability
- Volatility
- Fabrication Cost
- Access mechanism

Rel. 31.03.2017

Outline

- Introduction
- Memory Organization
- Memory Characteristics
- Access mechanisms
- Where we are coming from
- External vs Internal Architectures
- Memory Hierarchy
- Memories with ECCs

Access Mechanisms

- Data Access:
 - By address
 - By content:
 - CAM (Content Addressable Memories)
 - Associative Memories
 - By writing order: FIFO (First-In First-Out)

Access Mechanisms

- Data Access:
 - By address
 - By content:
 - CAM (Content Addressable Memories)
 - Associative Memories
 - By writing order: FIFO (First-In First-Out)

Access by Address

- Each word can be accessed independently and is univocally identified by an *Address*
- On each word, data can be
 - Written
 - Read

Timing diagram for a read operation

Timing diagram for a write operation

D_out during write operation

- Advanced memory supports three forms of write behavior:
 - Normal Data on the output appears only during the read cycle. During a write cycle, the data (at the current address) does not appear on the output.
 - Write Through A copy of the input data appears at the output of the same port.
 - Read-Before-Write When new data is being written, the old contents of the address appears at the output.

Dual port RAM

- Synchronous Read and Write Access
- Separate clock control of A and B ports
- Word Write
- Fully Synchronous independent operation from each port

Dual port RAM: symbol

Dual port RAM: sym Write Enable for port A

Dual port RAM: Principle of operation

- Simultaneously accessing the same memory location with same clock rate may result in the following:
 - Both ports writing: unknown data will be written
 - One port writing, other port reading: Write is completed, while the data read out is technology dependent.
Access Mechanisms

- Data Access:
 - By address
 - By content:
 - CAM (Content Addressable Memories)
 - Ternary CAM
 - Associative Memories
 - By writing order: FIFO (First-In First-Out

Content Addressable Memories

- A CAM gets in input a data (of the same size of the CAM words) and provides in output the address of the word whose content equals the input data
 - In case of multiple matches, the minum (or maximum) address is provided
 - In case of missmatch (the input data is not stored in the CAM), a status signal is asserted

CAM conceptual view

Access Mechanisms

- Data Access:
 - By address
 - By content:
 - CAM (Content Addressable Memories)
 - Ternary CAM
 - Associative Memories
 - By writing order: FIFO (First-In First-Out)

TCAM (Ternary CAM)

- A variation of CAM in which don't care values can be used during the search
- Conceptually, in a TCAM cell, one can store the value "-", that during search will match with both "0" and "1"

Access Mechanisms

- Data Access:
 - By address

- By content:

- CAM (Content Addressable Memories)
- Ternary CAM
- Associative Memories
- By writing order: FIFO (First-In First-Out)

Associative memories

- Sistemi principalmente costituiti da memorie di tipologia CAM più della logica sparsa e talvolta reti neurali
- Utilizzati per ricerche nelle quali il matching avvenga anche in caso di un certo grado di "similitudine" tra la stringa cercata e quella memorizzata nella memoria (e.g., Christophoro Columbus potrebbe essere riconosciuto come Cristoforo Colombo).

Access Mechanisms

- Data Access:
 - By address

- By content:

- CAM (Content Addressable Memories)
- Ternary CAM
- Associative Memories

- By writing order: FIFO (First-In First-Out)

- Functionally equivalent to the homonymous wellknown Abstract Data Type defined in CS
- Usually implemented resorting to dual port RAMs

FIFO memories

 Mostly used as interface buffers between producers and consumers with different throughputs

FIFO Cypress CY7C42x5

Lecture 0_7.5 - Slide 50

Outline

- Introduction
- Memory Organization
- Memory Characteristics
- Access mechanisms
- Where we are coming from
- External vs Internal Architectures
- Memory Hierarchy
- Memories with ECCs

Data Storage Evolution

Memory Evolution

Memory Evolution

CMOS Technology Evolution

Rel. 31.03.2017

Technology Scaling Effects

ADVANTAGES	ISSUES
Higher integration Higher speed Lower capacitance	Higher variability Decreased dependability Increased leakage power
Lower switching energy	CPU vs. Memory

CPU vs. Memory

[Hennessy and Patterson, 5th Edition]

Outline

Introduction

- Memory Organization
- Memory Characteristics
- Access mechanisms
- Where we are coming from
- External vs Internal Architectures
- Memory Hierarchy
- Memories with ECCs

External vs Internal Architectures

When dealing with a memory component, one must distinguish between

- **External architecture** : the way a user "sees" the components and can use it
- Internal architecture : how cells are actually organized within the component.

An example: the Micron MT48LC32M16A2 Memory

A Synchronous Memory of 512 Mb, accessible from a user as a memory of 32 M words of 16 bits, each.

- External architecture :
 - Address bus of 15 bits to access each of the 32 M (=2¹⁵) words
 - Data bus of 16 bit
 - Several control and status signals
- Internal architecture :
 - 4 banks (or matrices, or arrays), each composed of 8 k rows and 1 k columns, each column including 16 bits.

Outline

Introduction

- Memory Organization
- Memory Characteristics
- Access mechanisms
- Where we are coming from
- External vs Internal Architectures
- Memory Hierarchy
- Memories with ECCs

Memory Hierarchy

Memory Hierarchy

Memory Hierarchy

Where are we going Architecture

Where are we going Architecture

- Reconfiguration:
 - Service-Oriented:
 - User Selectable
 - Application Driven
 - Aging-Dependent

Outline

Introduction

- Memory Organization
- Memory Characteristics
- Access mechanisms
- Where we are coming from
- External vs Internal Architectures
- Memory Hierarchy
- Memories with ECCs

Memories with Error Correction Capability

 Memories are mostly equipped with EDACs (Error Detectors and Correctors), all exploiting ECCs (Error Correcting Codes)

An example of information redundancy

- Codes (parity, Hamming, Berger, Solomon, cyclic, arithmetic, ...) are classified according to their ability to detect and correct errors affecting the code words:
 - k-error detecting code: detect the presence of an error that modifies up to k bits
 - k-error correcting code: correct an error that modifies up to k bits.

Hamming Codes

- Being N the word size, they require log₂ N bits of code and are able to:
 - Correct ALL Single Errors
 - Detect ALL Double Errors
- Thus, are often referred to as SEC-DED Code (Single Error Correction Double Error Detection).

