

Digital Network Modeling

Paolo PRINETTO

Politecnico di Torino (Italy)
Univ. of Illinois at Chicago, IL (USA)
CINI Cybersecurity Nat. Lab. (Italy)

Paolo.Prinetto@polito.it

www.consorzio-cini.it www.comitato-girotondo.org

License Information

This work is licensed under the Creative Commons BY-NC License

To view a copy of the license, visit: http://creativecommons.org/licenses/by-nc/3.0/legalcode

Disclaimer

- We disclaim any warranties or representations as to the accuracy or completeness of this material.
- Materials are provided "as is" without warranty of any kind, either express or implied, including without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement.
- Under no circumstances shall we be liable for any loss, damage, liability or expense incurred or suffered which is claimed to have resulted from use of this material.

Goal

- The lecture aims at presenting the basic concepts in modeling digital networks, focusing, in particular, on:
 - . Combinational vs. sequential
 - . Mealy vs. Moore
 - . I/O clustering.

Prerequisites

– Lecture 0_4.2

Homework

– None

Further readings

• Students interested in making a reference to a text book on the arguments covered in this lecture can refer, for instance, to:

- G. Conte, A. Mazzeo, N. Mazzocca, P. Prinetto: "Architettura dei calcolatori", Città Studi, 2015 (Chapter 1: Classificazioni e Concetti base & App. B: Modellizzazione di circuiti digitali)) (In Italian)

GIANNI CONTE ANTONINO MAZZEO NICOLA MAZZOCCA PAOLO PRINETTO

Architettura dei calcolatori

CittoStudi

Outline

- Combinational vs. sequential networks
- Moore vs. Mealy machines
- I/O clustering

Outline

- Combinational vs. sequential networks
- Moore vs. Mealy machines
- I/O clustering

Some graphic conventions

Hereinafter:

wires

will identify a bus or a set of

will identify a single bit wire

Model

A model is a simplification of another entity, which can be a physical thing or another model

[Jantsch, 2004]

Model's features The model contains exactly those characteristics and properties of the modeled entity that are relevant for a given task Slide # 0 4.4.12 © Prinetto - 2019

Minimal models A model is minimal with respect to a task if it does not contain any other characteristics than those relevant for the task Slide # 0 4.4.13 © Prinetto - 2019

A proper assembly of electronic devices, designed to store, transform, and communicate information items in digital form

Digital networks classification

Digital networks are usually classified as:

- combinational
- sequential

An example

An example

S

R

Feedback

The concept of state

- A sequential circuit must be able to "remember", or "store", some information items related to the values the PIs have got.
- Such a storing capability is accomplished in terms of "internal states": in any instant, the circuits is in a well defined "state", univocally represented by the values got by the set of "internal state variables".

Slide # 0_4.4.25

State variables

- A sequential network has as many state variables as feedback elements
- Each state variables can get 2 possible values
- A network with n state variables is characterized by 2 n possible states.

Sequential network classification

Sequential network classification

Asynchronous networks

- Each feedback element is just a wire
- The information flows through feedback elements is a continuum and not synchronized by any external event

Asynchronous network structure

Asynchronous network structure

Present-state variables

Next-state variables

Synchronous networks

- Each feedback is always performed via a particular device, named Flip-Flop
- Flip-Flop behavior is controlled and timed by an ad-hoc signal, usually referred to as clock
- The information flow through the feedback elements is thus "synchronized" by the clock

State register

 The set of Flip-Flops is often referred to as "State Register", since it stores the network state variables.

Synchronous network structure

Slide # 0_4.4.40

Rel. 12.03.2019

Finite State Machines

 Synchronous networks, being characterized by a finite # of flip-flops, and thus of states, are very often referred to as *Finite State Machines* (FSMs). Any FSM, regardless its complexity, MUST have:

- a particular control input signal, named reset signal (or simply reset) characterized by the highest priority
- a particular state, named reset state, in which the network moves

whenever the reset signal is asserted.

Asynchronous reset

Outline

- Combinational vs. sequential networks
- Moore vs. Mealy machines
- I/O clustering

Combinational network splitting

Slide # 0_4.4.45

Rel. 12.03.2019

Combinational network splitting

Slide # 0_4.4.46

Rel. 12.03.2019

Moore machines

POs depend on the present state value, only.

POs can change only when state changes.

Mealy machines

 POs depend on both the present state value and the PIs values.

POs can change not only when the state changes, but when PIs change, too.

Outline

- Combinational vs. sequential networks
- Moore vs. Mealy machines
- I/O clustering

System I/O signals

Timing Inputs

Data Inputs

Control Inputs

System

Data Outputs

Status Outputs

Timing Signals

Timing Inputs

Data Inputs

Control Inputs

'em

Data Outputs

Status Outputs

They synchronize the overall behavior of the network by:
sampling data and control inputs updating data and control outputs

Edge vs. pulse triggering

- Sampling and updating can be triggered by
 - clock's raising or falling edges
 - clock's positive or negative pulses.

Edge triggering behavior

- The same clock edge samples the inputs and concurrently updates the outputs:
 - raising edge → positive edge triggered
 - falling edge → negative edge triggered

Positive edge triggered

Positive edge triggered

Negative edge triggered

sample & update

Negative edge triggered

Pulse triggering behavior

 An edge of the clock samples the inputs values and the other edge updates the outputs

Positive pulse triggered

Positive pulse triggered

Set-up & Hold Times

 Sequential devices works properly iff some temporal constraints are satisfied

Set-up & Hold Times

Control Signals

Timing Inputs

They control the behavior of the network, by stating the operations to be performed

Data Inputs

Control Inputs

stem

Data Outputs

Status Outputs

Control Inputs classification

- According to their asserting characteristics,
 Control Inputs are usually classified as:
 - Synchronous
 - Asynchronous

Control Inputs classification

- According to their asserting characteristics,
 Control Inputs are usually classified as:
 - Synchronous
 - Asynchronous

When asserted, they are immediately active, regardless the clock.

Slide # 0_4.4.82

Rel. 12.03.2019

Control Inputs classification

- According to their asserting characteristics,
 Control Inputs are usually classified as:
 - Synchronous
 - Asynchronous

When asserted, they become active at the next clock (edge or pulse), only

Slide # 0_4.4.85

Rel. 12.03.2019

Slide # 0_4.4.86

Rel. 12.03.2019

