
Lecture
8_2.1

Computational
Complexity

Analysis

Paolo PRINETTO
Politecnico di Torino (Italy)

Univ. of Illinois at Chicago, IL (USA)
CINI Cybersecurity Nat. Lab. (Italy)

Paolo.Prinetto@polito.it
www.consorzio-cini.it

www.comitato-girotondo.org

Cybersecurity
National Lab

Slide # 8_2.1.2 © Prinetto - 2019Rel. 03.03.2019

License Information

This work is licensed under the
Creative Commons BY-NC

License

To view a copy of the license, visit:
http://creativecommons.org/licenses/by-nc/3.0/legalcode

Slide # 8_2.1.3 © Prinetto - 2019Rel. 03.03.2019

Disclaimer

• We disclaim any warranties or representations as
to the accuracy or completeness of this material.

• Materials are provided “as is” without warranty of
any kind, either express or implied, including
without limitation, warranties of merchantability,
fitness for a particular purpose, and non-
infringement.

• Under no circumstances shall we be liable for any
loss, damage, liability or expense incurred or
suffered which is claimed to have resulted from
use of this material.

Slide # 8_2.1.4 © Prinetto - 2019Rel. 03.03.2019

Goal

– This lecture aims at defining the terms of the
complexity of algorithms

Slide # 8_2.1.5 © Prinetto - 2019Rel. 03.03.2019

Prerequisites

– None

Slide # 8_2.1.6 © Prinetto - 2019Rel. 03.03.2019

Further readings

• Students interested in a deeper look at the covered
topics can refer, for instance, to the books listed at
the end of the lecture.

• A detailed presentation on Recurrences can be
found in Lecture 8_2.2.

Slide # 8_2.1.7 © Prinetto - 2019Rel. 03.03.2019

Outline

– Algorithm Complexity
– Computational analysis
– Asymptotic Behavior
– Notations !, ", #
– Examples of Computational analysis

Slide # 8_2.1.8 © Prinetto - 2019Rel. 03.03.2019

Outline

– Algorithm Complexity
– Computational analysis
– Asymptotic Behavior
– Notations !, ", #
– Examples of Computational analysis

Slide # 8_2.1.9 © Prinetto - 2019Rel. 03.03.2019

A sequence of
computational steps

that transform the
input into the output.

Each step must be
“finite” in terms of

required time & effort

Algorithm

Slide # 8_2.1.10 © Prinetto - 2019Rel. 03.03.2019

A sequence of
computational steps

that transform the
input into the output.

Each step must be
“finite” in terms of

required time & effort

Algorithm
The Arabic source,

al-Ḵwārizmī
‘the man of Ḵwārizm’

(now Khiva), was a
name given to the

mathematician
Abū Ja῾far Muhammad

ibn Mūsa

Slide # 8_2.1.11 © Prinetto - 2019Rel. 03.03.2019

Muhammad ibn Mūsā al-Khwārizmī

Baghdad,
780 – 850 AD

Slide # 8_2.1.12 © Prinetto - 2019Rel. 03.03.2019

Hint

Slide # 8_2.1.13 © Prinetto - 2019Rel. 03.03.2019

Remark

Generally, a problem can be
solved by using several
algorithms or programs.

Although,
not all the solutions

are equally good

Slide # 8_2.1.14 © Prinetto - 2019Rel. 03.03.2019

Algorithm analysis

Is required in order to:
• Compare two or more different algorithms

Slide # 8_2.1.15 © Prinetto - 2019Rel. 03.03.2019

Algorithm analysis

Is required in order to:
• Compare two or more different algorithms
• Foresee the behavior of an algorithm in extreme

conditions

Slide # 8_2.1.16 © Prinetto - 2019Rel. 03.03.2019

Algorithm analysis

Is required in order to:
• Compare two or more different algorithms
• Foresee the behavior of an algorithm in extreme

conditions
• Adjust the algorithm parameters to get better

results

Slide # 8_2.1.17 © Prinetto - 2019Rel. 03.03.2019

How evaluating the “quality”
of an algorithm?

• Subjective criteria:
– Simplicity
– Clearness
– Suitability w.r.t. the target problem

• Objective criteria:
– Computational analysis.

Slide # 8_2.1.18 © Prinetto - 2019Rel. 03.03.2019

Ability of solving the
proposed problem

using a low
consumption of
computational

resources

Efficiency

Slide # 8_2.1.19 © Prinetto - 2019Rel. 03.03.2019

Resources consumption

• Two fundamental factors of efficiency:
• Spatial cost or amount of memory required
• Temporal cost or time required to solve the

problem

• In order to solve a given problem, an algorithm or
program A will be better than another B if A solves
the problem in less time and/or uses less memory
than B

Slide # 8_2.1.20 © Prinetto - 2019Rel. 03.03.2019

Resources consumption

• Two fundamental factors of efficiency:
• Spatial cost or amount of memory required
• Temporal cost or time required to solve the

problem

• In order to solve a given problem, an algorithm or
program A will be better than another B if A solves
the problem in less time and/or uses less memory
than B

We will focus our attention
mainly on temporal cost

Slide # 8_2.1.21 © Prinetto - 2019Rel. 03.03.2019

Warning

Sometimes, just time or memory
are not the only suitable

parameters to appreciate the
quality of a program

Slide # 8_2.1.22 © Prinetto - 2019Rel. 03.03.2019

What is each program actaully doing?

A simple example

• Let’s consider three simple programs

Slide # 8_2.1.23 © Prinetto - 2019Rel. 03.03.2019

A simple example

• They all compute 102

Slide # 8_2.1.24 © Prinetto - 2019Rel. 03.03.2019

Be the times required to carried out a product,
sum, and successor.

A simple example

• Let's analyze their computational time

Slide # 8_2.1.25 © Prinetto - 2019Rel. 03.03.2019

Be the times required to carried out a product,
sum, and successor.

A simple example

• Let's analyze their computational time

Slide # 8_2.1.26 © Prinetto - 2019Rel. 03.03.2019

Be the times required to carried out a product,
sum, and successor.

A simple example

• Let's analyze their computational time

Which program is the
best: A1, A2, or A3 ?

Slide # 8_2.1.27 © Prinetto - 2019Rel. 03.03.2019

A simple example

• Let’s assume that A1, A2, A3 are executed on four
different computers with different characteristics
(different times for successor, sum and product
execution)

Slide # 8_2.1.28 © Prinetto - 2019Rel. 03.03.2019

A simple example

• Let’s assume that A1, A2, A3 are executed on four
different computers with different characteristics
(different times for successor, sum and product
execution)

For each computer
there’s a best one !!!

Slide # 8_2.1.29 © Prinetto - 2019Rel. 03.03.2019

Remark

A good cost characterization
should allow to establish the
program quality independently of:

• the computer
• the particular sizes of the

instances to process

Slide # 8_2.1.30 © Prinetto - 2019Rel. 03.03.2019

Solution

A good computational
characterization of a program:

Cost functional dependency with
the size of input – for large sizes !

Slide # 8_2.1.31 © Prinetto - 2019Rel. 03.03.2019

Outline

– Algorithm Complexity
– Computational analysis
– Asymptotic Behavior
– Notations !, ", #
– Examples of Computational analysis

Slide # 8_2.1.32 © Prinetto - 2019Rel. 03.03.2019

Execution time

In most cases the execution time of an algorithm is
influenced not from the actual values of input data,
but from their overall number

Slide # 8_2.1.33 © Prinetto - 2019Rel. 03.03.2019

Computational analysis

As a consequence, the computational complexity of a
target problem is usually expressed as:

T = T(n)
where:
• n : size of the problem:

of the “instances” to be dealt with
• T : Execution time :

of elementary operations needed to solve the
problem resorting to a given algorithm

Slide # 8_2.1.34 © Prinetto - 2019Rel. 03.03.2019

Advantages

• Generally, programs are useful to solve problems of
large sizes of input (if they are small, we could solve
them manually)

• Considering large sizes of input, we can carry out
simple approximations that considerably simplify
cost analysis

Slide # 8_2.1.35 © Prinetto - 2019Rel. 03.03.2019

Advantages

• Programs no longer depend on:
– specific execution time values of the different

elementary instructions used (if they don’t
depend on the size of input)

– sizes of the input of specific instances of the
program to solve

Slide # 8_2.1.36 © Prinetto - 2019Rel. 03.03.2019

Outline

– Algorithm Complexity
– Computational analysis
– Asymptotic Behavior
– Notations !, ", #
– Examples of Computational analysis

Slide # 8_2.1.37 © Prinetto - 2019Rel. 03.03.2019

Asymptotic Behavior

• Execution time is often evaluated by studying its
asymptotic behavior, i.e., through the performance
of the function T(n), which describes the cost of
running the algorithm when the size of the problem
grows:

• In this way we neglect:
– constants that do not alter the order of ∞
– the terms of a lower order

!"#$→	∞ (($)

Slide # 8_2.1.38 © Prinetto - 2019Rel. 03.03.2019

Asymptotic Behavior

Slide # 8_2.1.39 © Prinetto - 2019Rel. 03.03.2019

Asymptotic Behavior - Advantages

• The analysis of the asymptotic behavior:
– is independent from the characteristics of the

compiler and the machine used to implement the
algorithm in the form of program

– allows to compare the algorithms underlying the
programs, rather than the programs themselves

– is the only tool that allows to determine the
maximum approachable size of a given problem.

Slide # 8_2.1.40 © Prinetto - 2019Rel. 03.03.2019

Asymptotic Behavior - Disadvantages

• Studying only the asymptotic behavior of the
function T(n) does not lead to the choice of the
algorithm to use.

Slide # 8_2.1.41 © Prinetto - 2019Rel. 03.03.2019

Asymptotic Behavior - Disadvantages

• Other items to consider are in fact:
– the memory amount actually occupied by the

program
– the number of calls to I/O functions
– the amount of data that the program will have to

process:
. if n is predominantly small, you should

consider the exact execution time, taking into
account the constant of proportionality, rather
than the asymptotic behavior

Slide # 8_2.1.42 © Prinetto - 2019Rel. 03.03.2019

Asymptotic Behavior - Disadvantages

Slide # 8_2.1.43 © Prinetto - 2019Rel. 03.03.2019

Step

A STEP is the execution of a code
segment which processing time

either doesn’t depend on the size
of input of the considered

program,
or it is bounded by a constant.

Slide # 8_2.1.44 © Prinetto - 2019Rel. 03.03.2019

Computational cost
of a program

Number of STEPS
as a function of the size
of input of the program

Slide # 8_2.1.45 © Prinetto - 2019Rel. 03.03.2019

Examples
Examples

Slide # 8_2.1.46 © Prinetto - 2019Rel. 03.03.2019

Examples
Examples

Slide # 8_2.1.47 © Prinetto - 2019Rel. 03.03.2019

Outline

– Algorithm Complexity
– Computational analysis
– Asymptotic Behavior
– Notations !, ", #
– Examples of Computational analysis

Slide # 8_2.1.48 © Prinetto - 2019Rel. 03.03.2019

Notations !, ", #

• To describe the asymptotic behavior of an
algorithm several notations were introduced.

• Among the most used are to be mentioned:
– notation $: big O
– notation %: big Omega
– notation &: Teta

Slide # 8_2.1.49 © Prinetto - 2019Rel. 03.03.2019

Notation !

• An algorithm has a (upper delimitation for)
complexity !("(#)):

$(#) = !("(#))
$(#) % !("(#))

iff:

or, according to the definition of limit, iff:
∃',#(: |$(#)|≤'|"(#)| ∀#≥#(

• As # grows, $(#) grows as maximum as "(#), i.e.,
"(#) is an upper limit to the growth of $(#).

Slide # 8_2.1.50 © Prinetto - 2019Rel. 03.03.2019

Notation ! – Practical Rules

• Given that:

it is true that:

• In addition, for any given constant ":

Slide # 8_2.1.51 © Prinetto - 2019Rel. 03.03.2019

Notation !

• An algorithm has a (lower delimitation for)
complexity "(#($)):

%($)="(&('))

iff:

Slide # 8_2.1.52 © Prinetto - 2019Rel. 03.03.2019

Notation ! – Considerations

• As " grows, #(") grows at least as $("), i.e.,
$(") is a lower limit to the growth of #(").

• Notation % is useful to express the inherent
complexity of a given problem.

• Notation % can be seen as & reverse, as it holds:

#(")=%($(")) ⇒ $(")=&(#("))

Slide # 8_2.1.53 © Prinetto - 2019Rel. 03.03.2019

Notation !

• An algorithm has a complexity "(#($)):

%($)="(&('))
iff:

Slide # 8_2.1.54 © Prinetto - 2019Rel. 03.03.2019

Notation ! - Considerations

• If "(#)=$(%(#)),
– "(#) e %(#) grows similarly:

– %(#) is at the same time upper and lower
limitation for the growth of "(#):

Slide # 8_2.1.55 © Prinetto - 2019Rel. 03.03.2019

Notations !, ", #

Slide # 8_2.1.56 © Prinetto - 2019Rel. 03.03.2019

Outline

– Algorithm Complexity
– Computational analysis
– Asymptotic Behavior
– Notations !, ", #
– Examples of Computational analysis:

. Iterative procedure

. Recurrence

. Recursive procedure

Slide # 8_2.1.57 © Prinetto - 2019Rel. 03.03.2019

Example 1: Iterative procedure

void bubble (int* A, int N){
// sorts array into increasing order
int i, j, temp;

(1) for(i=0; i<N-1; i++)
(2) for(j=N-1; j>=i+1; j--)
(3) if(A[j-1]>A[j]){
(4) temp = A[j-1];
(5) A[j-1] = A[j];
(6) A[j] = temp;

}
}

Slide # 8_2.1.58 © Prinetto - 2019Rel. 03.03.2019

Example 1: Iterative procedure

void bubble (int* A, int N){
// sorts array into increasing order
int i, j, temp;

(1) for(i=0; i<N-1; i++)
(2) for(j=N-1; j>=i+1; j--)
(3) if(A[j-1]>A[j]){
(4) temp = A[j-1];
(5) A[j-1] = A[j];
(6) A[j] = temp;

}
}

Slide # 8_2.1.59 © Prinetto - 2019Rel. 03.03.2019

Example 1: Iterative procedure

void bubble (int* A, int N){
// sorts array into increasing order
int i, j, temp;

(1) for(i=0; i<N-1; i++)
(2) for(j=N-1; j>=i+1; j--)
(3) if(A[j-1]>A[j]){
(4) temp = A[j-1];
(5) A[j-1] = A[j];
(6) A[j] = temp;

}
}

Slide # 8_2.1.60 © Prinetto - 2019Rel. 03.03.2019

Example 1: Iterative procedure

void bubble (int* A, int N){
// sorts array into increasing order
int i, j, temp;

(1) for(i=0; i<N-1; i++)
(2) for(j=N-1; j>=i+1; j--)
(3) if(A[j-1]>A[j]){
(4) temp = A[j-1];
(5) A[j-1] = A[j];
(6) A[j] = temp;

}
}

Slide # 8_2.1.61 © Prinetto - 2019Rel. 03.03.2019

Example 1: Iterative procedure

void bubble (int* A, int N){
// sorts array into increasing order
int i, j, temp;

(1) for(i=0; i<N-1; i++)
(2) for(j=N-1; j>=i+1; j--)
(3) if(A[j-1]>A[j]){
(4) temp = A[j-1];
(5) A[j-1] = A[j];
(6) A[j] = temp;

}
}

Slide # 8_2.1.62 © Prinetto - 2019Rel. 03.03.2019

Example 1: Iterative procedure

void bubble (int* A, int N){
// sorts array into increasing order
int i, j, temp;

(1) for(i=0; i<N-1; i++)
(2) for(j=N-1; j>=i+1; j--)
(3) if(A[j-1]>A[j]){
(4) temp = A[j-1];
(5) A[j-1] = A[j];
(6) A[j] = temp;

}
}

Slide # 8_2.1.63 © Prinetto - 2019Rel. 03.03.2019

Example 1: Iterative procedure

void bubble (int* A, int N){
// sorts array into increasing order
int i, j, temp;

(1) for(i=0; i<N-1; i++)
(2) for(j=N-1; j>=i+1; j--)
(3) if(A[j-1]>A[j]){
(4) temp = A[j-1];
(5) A[j-1] = A[j];
(6) A[j] = temp;

}
}

Slide # 8_2.1.64 © Prinetto - 2019Rel. 03.03.2019

Example 1: Iterative procedure

void bubble (int* A, int N){
// sorts array into increasing order
int i, j, temp;

(1) for(i=0; i<N-1; i++)
(2) for(j=N-1; j>=i+1; j--)
(3) if(A[j-1]>A[j]){
(4) temp = A[j-1];
(5) A[j-1] = A[j];
(6) A[j] = temp;

}
}

Slide # 8_2.1.65 © Prinetto - 2019Rel. 03.03.2019

Example 1: Iterative procedure

void bubble (int* A, int N){
// sorts array into increasing order
int i, j, temp;

(1) for(i=0; i<N-1; i++)
(2) for(j=N-1; j>=i+1; j--)
(3) if(A[j-1]>A[j]){
(4) temp = A[j-1];
(5) A[j-1] = A[j];
(6) A[j] = temp;

}
}

Slide # 8_2.1.66 © Prinetto - 2019Rel. 03.03.2019

Example 1: Iterative procedure

!(#) = 	!'÷) = 	* + ⋅ (# − .)
#−'

.='
= +*(# − .)

#−'

.='
=

= + /*#
#−'

.='
	 −* .

#−'

.='
0 = + /*#

#−'

.='
	 − 1*.

#

.='
− #20 =

= + 3#(# − ') − #(# + ')5 + #6

= + 35#
5 − 5#	 − #5 − # + 5#

5 6 =

= + 3#
5 − #
5 6 = 78#59

Slide # 8_2.1.67 © Prinetto - 2019Rel. 03.03.2019

Outline

– Algorithm Complexity
– Computational analysis
– Asymptotic Behavior
– Notations !, ", #
– Examples of Computational analysis:

. Iterative procedure

. Recurrence

. Recursive procedure

Slide # 8_2.1.68 © Prinetto - 2019Rel. 03.03.2019

An equation that
describes a function
in terms of its value
on smaller functions

Recurrence

Slide # 8_2.1.69 © Prinetto - 2019Rel. 03.03.2019

Recurrence Examples

î
í
ì

>
=

-+
=

0
0

)1(
0

)(
n
n

nsc
ns

î
í
ì

>-+
=

=
0)1(
00

)(
nnsn
n

ns

ï
ï
î

ïï
í

ì

>+÷
ø
ö

ç
è
æ

=

=
1

2
2

1

)(
ncnT

nc

nT

ï
ï

î

ï
ï

í

ì

>+÷
ø
ö

ç
è
æ

=
=

1

1
)(

ncn
b
naT

nc
nT

Slide # 8_2.1.70 © Prinetto - 2019Rel. 03.03.2019

Divide and conquer algorithm

An algorithm that divides the
problem of size n into

subproblems, each of size n/b

Slide # 8_2.1.71 © Prinetto - 2019Rel. 03.03.2019

Recurrences’ Complexity Analysis

Given the recurrence

with !, ", # costants ≥ $.
ïî

ï
í
ì

>+÷
ø
ö

ç
è
æ

=
= 1

1
)(ncn

b
naT

nc
nT

Slide # 8_2.1.72 © Prinetto - 2019Rel. 03.03.2019

Recurrences’ Complexity Analysis

Given the recurrence

with !, ", # costants ≥ $.
Its complexity is:

ïî

ï
í
ì

>+÷
ø
ö

ç
è
æ

=
= 1

1
)(ncn

b
naT

nc
nT

()
()
()ï

î

ï
í

ì

>Q
=Q
<Q

=
ban
bann
ban

nT
a
b
blog

log)(

Slide # 8_2.1.73 © Prinetto - 2019Rel. 03.03.2019

Example 1

• Let’s analyze:

ï
ï
î

ïï
í

ì

>+÷
ø
ö

ç
è
æ

=

=
1

2
2

1

)(
ncnnT

nc

nT

Slide # 8_2.1.74 © Prinetto - 2019Rel. 03.03.2019

Example 1

• Let’s analyze:

• Since in this case, a=b, we get:
T(n) = ! (n log n)

ï
ï
î

ïï
í

ì

>+÷
ø
ö

ç
è
æ

=

=
1

2
2

1

)(
ncnnT

nc

nT

Slide # 8_2.1.75 © Prinetto - 2019Rel. 03.03.2019

Example 2

• Let’s analyze:

ï
ï
î

ïï
í

ì

>+÷
ø
ö

ç
è
æ

=

=
1

2
2

1

)(
ncnnT

nc

nT
9T(n/3) + n

Slide # 8_2.1.76 © Prinetto - 2019Rel. 03.03.2019

Example 2

• Let’s analyze:

a = 9 b=3

ï
ï
î

ïï
í

ì

>+÷
ø
ö

ç
è
æ

=

=
1

2
2

1

)(
ncnnT

nc

nT
9T(n/3) + n

()
()
()ï

î

ï
í

ì

>Q
=Q
<Q

=
ban
bann
ban

nT
a
b
blog

log)(

Slide # 8_2.1.77 © Prinetto - 2019Rel. 03.03.2019

Example 2

• Let’s analyze:

a = 9 b=3

ï
ï
î

ïï
í

ì

>+÷
ø
ö

ç
è
æ

=

=
1

2
2

1

)(
ncnnT

nc

nT
9T(n/3) + n

()
()
()ï

î

ï
í

ì

>Q
=Q
<Q

=
ban
bann
ban

nT
a
b
blog

log)(
T(n) = Q(nlog3 9) = Q(n2)

Slide # 8_2.1.78 © Prinetto - 2019Rel. 03.03.2019

Outline

– Algorithm Complexity
– Computational analysis
– Asymptotic Behavior
– Notations !, ", #
– Examples of Computational analysis:

. Iterative procedure

. Recurrence

. Recursive procedure

Slide # 8_2.1.79 © Prinetto - 2019Rel. 03.03.2019

Example 3: recursive procedure

int fact (int n){
// fact(n) computes n!
int rv;

(1) if(n<=1){
(2) rv = 1;
(3) } else{rv = rv * fact(n-1);}

return rv;
}

Slide # 8_2.1.80 © Prinetto - 2019Rel. 03.03.2019

Example 3: recursive procedure

int fact (int n){
// fact(n) computes n!
int rv;

(1) if(n<=1){
(2) rv = 1;
(3) } else{rv = rv * fact(n-1);}

return rv;
}

Slide # 8_2.1.81 © Prinetto - 2019Rel. 03.03.2019

Example 3: recursive procedure

!(")=#+!("−$)=%#+!("−%)=&#+!("−&)

if &="−$ it holds:

!(")=("−$)#+!($)=("−$)#+'

and so:
!(")=((")

Slide # 8_2.1.82 © Prinetto - 2019Rel. 03.03.2019

References

• A.V. Aho, J.E. Hopcroft, J.D. Ullman:
“Design and Analysis of Computer Algorithms,”
Addison Wesley, Reading MA (USA), 1974, pp. 364-
427

• G. Ausiello, A. Marchetti-Spaccamela, M. Protasi:
“Teoria e Progetto di Algoritmi Fondamentali,”
Ed. Franco Angeli, Milano, 1985, pp. 1-75, 120-166

• S. Baase: “Computer Algorithms,”
Addison Wesley, Reading MA (USA), 1988, pp. 319-
360

• E. Horowitz, S. Sahni:
“Fundamentals of Computer Algorithms,”
Pittman, London (UK), 1978, pp. 501-613

1

Slide # 8_2.1.83 © Prinetto - 2019Rel. 03.03.2019

References

• Z. Manna:
“Teoria matematica della computazione,”
Boringhieri, Torino, 1978, pp. 1-79

• C.H. Papadimitriou, K. Steiglitz:
“Combinatorial Optimization: Algorithms and
Complexity,”
Prentice Hall, Englewood Cliffs NJ (USA), 1982, pp.
342-405

• E.M. Reingold, J. Nievergelt, N. Deo:
“Combinatorial Algorithms: Theory and Practice,”
Prentice Hall, Englewood Cliffs NJ (USA), 1977, pp.
401-422

2

Slide # 8_2.1.84 © Prinetto - 2019Rel. 03.03.2019

References

• R. Sedgewick:
“Algorithms in C,”
Addison Wesley, Reading MA (USA), 1990, pp. 67-
80, 633-643

• C.J. Van Wyk:
“Data Structures and C Programs,”
Addison Wesley, Reading MA (USA), 1988, pp. 3-48

3

Slide # 8_2.1.85 © Prinetto - 2019Rel. 03.03.2019

Малые Автюхи, Калинковичский район, Республики Беларусь

