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Disclaimer

• We disclaim any warranties or representations as 
to the accuracy or completeness of this material.

• Materials are provided “as is” without warranty of 
any kind, either express or implied, including 
without limitation, warranties of merchantability, 
fitness for a particular purpose, and non-
infringement. 

• Under no circumstances shall we be liable for any 
loss, damage, liability or expense incurred or 
suffered which is claimed to have resulted from 
use of this material. 
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Goal

– This lecture aims at defining the terms of the 
complexity of algorithms
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Prerequisites

– None
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Further readings

• Students interested in a deeper look at the covered 
topics can refer, for instance, to the books listed at 
the end of the lecture.

• A detailed presentation on Recurrences can be 
found in Lecture 8_2.2.
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Outline

– Algorithm Complexity
– Computational analysis
– Asymptotic Behavior
– Notations !, ", #
– Examples of Computational analysis



Slide # 8_2.1.8 © Prinetto - 2019Rel.  03.03.2019

Outline

– Algorithm Complexity
– Computational analysis
– Asymptotic Behavior
– Notations !, ", #
– Examples of Computational analysis



Slide # 8_2.1.9 © Prinetto - 2019Rel.  03.03.2019

A sequence of 
computational steps 

that transform the 
input into the output.

Each step must be 
“finite” in terms of 

required time & effort

Algorithm
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A sequence of 
computational steps 

that transform the 
input into the output.

Each step must be 
“finite” in terms of 

required time & effort

Algorithm
The Arabic source,

al-Ḵwārizmī
‘the man of Ḵwārizm’

(now Khiva), was a 
name given to the 

mathematician 
Abū Ja῾far Muhammad 

ibn Mūsa
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Muhammad ibn Mūsā al-Khwārizmī

Baghdad, 
780 – 850 AD
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Hint
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Remark

Generally, a problem can be 
solved by using several 
algorithms or programs. 

Although, 
not all the solutions 

are equally good
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Algorithm analysis 

Is required in order to:
• Compare two or more different algorithms
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Algorithm analysis 

Is required in order to:
• Compare two or more different algorithms
• Foresee the behavior of an algorithm in extreme 

conditions
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Algorithm analysis 

Is required in order to:
• Compare two or more different algorithms
• Foresee the behavior of an algorithm in extreme 

conditions
• Adjust the algorithm parameters to get better 

results
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How evaluating the “quality” 
of an algorithm? 

• Subjective criteria:
– Simplicity
– Clearness
– Suitability w.r.t. the target problem

• Objective criteria:
– Computational analysis.
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Ability of solving the 
proposed problem 

using a low 
consumption of 
computational 

resources

Efficiency
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Resources consumption

• Two fundamental factors of efficiency:
• Spatial cost or amount of memory required
• Temporal cost or time required to solve the 

problem

• In order to solve a given problem, an algorithm or 
program A will be better than another B if A solves 
the problem in less time and/or uses less memory 
than B
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Resources consumption

• Two fundamental factors of efficiency:
• Spatial cost or amount of memory required
• Temporal cost or time required to solve the 

problem

• In order to solve a given problem, an algorithm or 
program A will be better than another B if A solves 
the problem in less time and/or uses less memory 
than B

We will focus our attention 
mainly on temporal cost
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Warning

Sometimes, just time or memory 
are not the only suitable 

parameters to appreciate the 
quality of a program
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What is each program actaully doing?

A simple example

• Let’s consider three simple programs
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A simple example

• They all compute 102
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Be                       the times required to carried out a product, 
sum, and successor.

A simple example

• Let's analyze their computational time
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Be                       the times required to carried out a product, 
sum, and successor.

A simple example

• Let's analyze their computational time

Which program is the 
best: A1, A2, or A3 ?



Slide # 8_2.1.27 © Prinetto - 2019Rel.  03.03.2019

A simple example

• Let’s assume that A1, A2, A3 are executed on four 
different computers with different characteristics 
(different times for successor, sum and product
execution)
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A simple example

• Let’s assume that A1, A2, A3 are executed on four 
different computers with different characteristics 
(different times for successor, sum and product
execution)

For each computer 
there’s a best one !!!
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Remark

A good cost characterization
should allow to establish the
program quality independently of:

• the computer 
• the particular sizes of the 

instances to process
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Solution

A good computational 
characterization of a program:

Cost functional dependency with 
the size of input – for large sizes !



Slide # 8_2.1.31 © Prinetto - 2019Rel.  03.03.2019

Outline

– Algorithm Complexity
– Computational analysis
– Asymptotic Behavior
– Notations !, ", #
– Examples of Computational analysis
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Execution time

In most cases the execution time of an algorithm is 
influenced not from the actual values of input data, 
but from their overall number
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Computational analysis

As a consequence, the computational complexity of a 
target problem is usually expressed as:

T = T(n)
where:
• n : size of the problem:

# of the “instances” to be dealt with
• T : Execution time : 

# of elementary operations needed to solve the 
problem resorting to a given algorithm
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Advantages

• Generally, programs are useful to solve problems of 
large sizes of input (if they are small, we could solve 
them manually)

• Considering large sizes of input, we can carry out 
simple approximations that considerably simplify 
cost analysis
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Advantages

• Programs no longer depend on:
– specific execution time values of the different 

elementary instructions used (if they don’t 
depend on the size of input)

– sizes of the input of specific instances of the 
program to solve
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Outline

– Algorithm Complexity
– Computational analysis
– Asymptotic Behavior
– Notations !, ", #
– Examples of Computational analysis
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Asymptotic Behavior

• Execution time is often evaluated by studying its 
asymptotic behavior, i.e., through the performance 
of the function T(n), which describes the cost of 
running the algorithm when the size of the problem 
grows:

• In this way we neglect:
– constants that do not alter the order of ∞
– the terms of a lower order

!"#$→	∞ (($) 
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Asymptotic Behavior
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Asymptotic Behavior - Advantages

• The analysis of the asymptotic behavior:
– is independent from the characteristics of the 

compiler and the machine used to implement the 
algorithm in the form of program

– allows to compare the algorithms underlying the 
programs, rather than the programs themselves

– is the only tool that allows to determine the 
maximum approachable size of a given problem.
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Asymptotic Behavior - Disadvantages

• Studying only the asymptotic behavior of the 
function T(n) does not lead to the choice of the 
algorithm to use.
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Asymptotic Behavior - Disadvantages

• Other items to consider are in fact:
– the memory amount actually occupied by the 

program
– the number of calls to I/O functions
– the amount of data that the program will have to 

process:
. if n is predominantly small, you should 

consider the exact execution time, taking into 
account the constant of proportionality, rather 
than the asymptotic behavior
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Asymptotic Behavior - Disadvantages
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Step

A STEP is the execution of a code 
segment which processing time 

either doesn’t depend on the size 
of input of the considered 

program, 
or it is bounded by a constant.
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Computational cost 
of a program

Number of STEPS 
as a function of the size 
of input of the program
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Examples
Examples
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Examples
Examples
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Outline

– Algorithm Complexity
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– Asymptotic Behavior
– Notations !, ", #
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Notations !, ", #

• To describe the asymptotic behavior of an 
algorithm several notations were introduced.

• Among the most used are to be mentioned:
– notation $: big O
– notation %: big Omega
– notation &: Teta
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Notation !

• An algorithm has a (upper delimitation for) 
complexity !("(#)):

$(#)  = !("(#)) 
$(#) % !("(#)) 

iff:

or, according to the definition of limit, iff:
∃',#( : |$(#)|≤'|"(#)|  ∀#≥#(

• As # grows, $(#) grows as maximum as "(#), i.e., 
"(#) is an upper limit to the growth of $(#).
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Notation ! – Practical Rules

• Given that: 

it is true that: 

• In addition, for any given constant ":
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Notation !

• An algorithm has a (lower delimitation for) 
complexity "(#($)):

%($)="(&('))

iff:
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Notation ! – Considerations

• As " grows, #(") grows at least as $("), i.e.,
$(") is a lower limit to the growth of #(").

• Notation % is useful to express the inherent
complexity of a given problem.

• Notation % can be seen as & reverse, as it holds:

#(")=%($("))  ⇒ $(")=&(#("))
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Notation !

• An algorithm has a complexity "(#($)):

%($)="(&('))
iff:



Slide # 8_2.1.54 © Prinetto - 2019Rel.  03.03.2019

Notation ! - Considerations

• If "(#)=$(%(#)),
– "(#) e %(#) grows similarly:

– %(#) is at the same time upper and lower
limitation for the growth of "(#):
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Notations !, ", #
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Outline

– Algorithm Complexity
– Computational analysis
– Asymptotic Behavior
– Notations !, ", #
– Examples of Computational analysis:

. Iterative procedure

. Recurrence

. Recursive procedure
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Example 1: Iterative procedure

void bubble (int* A, int N){
// sorts array into increasing order
int i, j, temp;

(1) for(i=0; i<N-1; i++)
(2) for(j=N-1; j>=i+1; j--)
(3) if(A[j-1]>A[j]){
(4) temp = A[j-1];
(5) A[j-1] = A[j];
(6) A[j] = temp;

}
}
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Example 1: Iterative procedure

!(#) = 	!'÷) = 	* + ⋅ (# − .)
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Outline

– Algorithm Complexity
– Computational analysis
– Asymptotic Behavior
– Notations !, ", #
– Examples of Computational analysis:
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. Recurrence

. Recursive procedure
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An equation that 
describes a function 
in terms of its value 
on smaller functions

Recurrence
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Recurrence Examples
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Divide and conquer algorithm

An algorithm that divides the 
problem of size n into 

subproblems, each of size n/b
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Recurrences’ Complexity Analysis

Given the recurrence

with !, ", # costants ≥ $.
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Recurrences’ Complexity Analysis

Given the recurrence

with !, ", # costants ≥ $.
Its complexity is:
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Example 1

• Let’s analyze:
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Example 1

• Let’s analyze:

• Since in this case, a=b, we get: 
T(n) = ! (n log n)
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Example 2

• Let’s analyze:
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Example 2

• Let’s analyze:

a = 9   b=3
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Example 2

• Let’s analyze:

a = 9   b=3
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Outline

– Algorithm Complexity
– Computational analysis
– Asymptotic Behavior
– Notations !, ", #
– Examples of Computational analysis:
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Example 3: recursive procedure

int fact (int n){
// fact(n) computes n!
int rv;

(1) if(n<=1){
(2) rv = 1;
(3) } else{rv = rv * fact(n-1);}

return rv;
}
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Example 3: recursive procedure

!(")=#+!("−$)=%#+!("−%)=&#+!("−&)

if &="−$ it holds:

!(")=("−$)#+!($)=("−$)#+'

and so:
!(")=((")
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