Trees
& Traversals

Alessandro SAVINO
Politecnico di Torino (ltaly)

alessandro.savino@polito.it

www.testqgroup.polito.it

http://www.testgroup.polito.it/

License Information

This work is licensed under the
Creative Commons BY-NC
License

To view a copy of the license, visit:
http://creativecommons.org/licenses/by-nc/3.0/legalcode

Lecture # 11_8.6 — Slide 2 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Disclaimer

 We disclaim any warranties or representations as
to the accuracy or completeness of this material.

 Materials are provided “as is” without warranty of
any kind, either express or implied, including
without limitation, warranties of merchantability,
fitness for a particular purpose, and non-
infringement.

 Under no circumstances shall we be liable for any
loss, damage, liability or expense incurred or
suffered which is claimed to have resulted from
use of this material.

Lecture # 11_8.6 — Slide 3 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Goal

— This lecture aims at presenting the Tree
container, the related operations, and the visiting
techniques.

Lecture # 11_8.6 — Slide 4 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Prerequisites

* Lectures:
— 11_7.x Pointers & Dynamic Memory

Lecture # 11_8.6 — Slide 5 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Further readings

« Students interested in a deeper look at the covered
topics can refer, for instance, to the books listed at
the end of the lecture.

Lecture # 11_8.6 — Slide 6 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Outline

 Trees introduction
 Binary search trees

« Traversing algorithms

« Searching a BST

* Insert and Delete in a BST
 Tree balancing

Lecture # 11_8.6 — Slide 7 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Outline

. Cl'rees introduction

Binary search trees
Traversing algorithms
Searching a BST

Insert and Delete in a BST
Tree balancing

Lecture # 11_8.6 — Slide 8 Rel. 10/06/2019

© Savino, Sanchez — 2017- 2019

Tree

A tree is an ADT that

represents a

hierarchical structure.

Containing a root
node and a set of
linked nodes known
as children. There
exists only one path
from the root to any

/

Lecture # 11_8.6 — Slide 9 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Family trees

Spanish Habsburg

Philip IT
Philip IV
| | |
Louis XIV == Maria Theresa Charles II Margaret — Emperot — Fleanore
(d.1700) Theresa LeopoldI of Neuberg
Louis the Dauphin
| Elector = Matia Emperor Archduke
' of Bavaria Antonda Josephl Chatles
Louis Duke of Anjou
Duke of Burgundy Philip V
| Electoral Prince
Louis XV Joseph Ferdinand
Carlo Alberto
1798 - 1849 Dukes of Gernoa
1
i
Vittorio Emanuele 11 Ferdinando
1820 - 1878 Dukes of Aosta 1822 - 1855
Umberto I Amedeo 'l‘omlnlasn
1844 - 1900 1845 - 1890 1854 - 1931
1
I I . | 1
Vittorio Emanuaele 111 Emanuele Filiberto Ferdinandoe Filiberto Eugenio

1869 - 1947

Umberto 11
1904 - 1983

Vittorio Emanuele
1937

Emanuele Filiberto
1972

Lecture # 11_8.6 —

Amedeo
1898 - 1942

1869 - 1931

1884 - 1963 1895 - 1990 1906 - 1996

1900 -

Am

Aimone

1948

edeo

1943

Aimone
1967

Slide 10

Rel. 10/06/2019

the Buendias of Macondo

Remedios the Beauty

NES

Aureliano

SN ™
//\)
Aurelano

OneerigadipR Y e cha2liuo £7-F6Ho

Indexes

 Book
- C1
. s1.1
. 1.2
- C2
. 2.1
—-s2.1.1
—s2.1.2
. 2.2
. 2.3
- C3

Lecture # 11_8.6 — Slide 11 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Indexes

« Book Book
— C1 / \
. s1.1 e c) 2,
. 1.2
— C2 / \ /l\
. 82.1 s1.1 s1.2 s2.1 s2.2 s2.3
—-s2.1.1 / \
—-s2.1.2
- g2.2 s2.1.1 s2.1.2
. 82.3
- C3

Lecture # 11_8.6 — Slide 12 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Formal definition

A treeis an acyclic data structure composed by
nodes and edges accessed beginning at a root
node

— Each node is either a leaf or an internal node

— An internal node has 1 or more children, nodes
that can be reached directly from that internal
node.

— The internal node is said to be the parent of its
child nodes

Lecture # 11_8.6 — Slide 13 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Tree diagram |

root

Y
[
|y
SR P

NS \gje . 7 Wﬂj_ A
S R

Lecture # 11_8.6 — Slide 14 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

edges

/

internal

node
AW

Tree diagram

root
: \A edges
internal

node A A /

Jaupa

< |eaf

Subtrees

Lecture # 11_8.6 — Slide 15 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Tree terminology

* Leaf: node with no children
« Siblings: two or more nodes with the same parent.

 Path: a sequence of nodes n4, n,, ... , N, such that n,
is the parent of n;,, for1<i<k

— the length of a path is the number of edges in the
path, or 1 less than the number of nodes in it

 Depth or level: length of the path from root to the
current node (depth of root = 0)

* Height: length of the longest path from root to any
leaf

 Degree: number of subtrees of a node.

Lecture # 11_8.6 — Slide 16 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Balanced trees

« A balanced tree is one where no node has two
subtrees that differ in height by more than 1

— visually, balanced trees look wider and flatter

<—

balanced unbalanced

Lecture # 11_8.6 — Slide 17 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Tree path length and depth

Level
A 0
[
v v
B C 1

O
m
N

3

M
o

Lecture # 11_8.6 — Slide 18 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Tree example

o root

A
leaves EFCGHI
hei ght 2
level of root 0
° @ o level of node with F 2
nodes at level 1 3
parentof G, HandI D
@ @ @ o @ descendants of B EF

Lecture # 11_8.6 — Slide 19 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Trees representing arithmetic expressions

A tree representing an arithmetic expression follows
these rules:

 Leaves: Operands (constants or variables)
 Non-leaves nodes: operators.

Lecture # 11_8.6 — Slide 20 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Trees representing arithmetic expressions

Example:
(a+b/c)*(d-e*f)

Lecture # 11_8.6 — Slide 21 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Outline

« Trees introduction

. (Binary search trees >
« Traversing algorithms

« Searching a BST

* Insert and Delete in a BST

 Tree balancing

Lecture # 11_8.6 — Slide 23 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Binary Search Trees - BST

Binary Search Trees (BST) are containers efficiently
supporting the following operations:

Search, Minimum, Maximum, Predecessor,
Successor, Insert, Delete.

They are a good solution to implement dictionaries or
priority queues.

Lecture # 11_8.6 — Slide 24 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Goals

BSTs are defined in such a way that the complexity of
each operation is proportional to the height h of the
tree.

For a complete and balanced tree with n nodes, the
complexity is &(log n) in the worst case.

For a fully unbalanced tree, the worst case is O(n).
In average we expect ®(log n).

Lecture # 11_8.6 — Slide 25 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Definitions

Binary Search Tree:

— Tree: hierarchical structure with ONE root and
ONLY ONE path from the root to any node

— Binary: each node has at most two children (left
and right) and (except for the root) exactly one
father (p)

— Search: the nodes have a key, used as a sorting
criteria

Lecture # 11_8.6 — Slide 26 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

BST

A 2" degree tree, may be a BST

ROOT

Lecture # 11_8.6 — Slide 27 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Sorting rule ()

For each node x:
— For all nodes in the left tree:

key[y] < key[x]
— For all nodes in the right tree:

key[y] = key[X]

— —

The definition is recursive along the
tree!

N—] _

Lecture # 11_8.6 — Slide 28 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Sorting rule (1)

l

~ ®\

IA
X
vV
X

Lecture # 11_8.6 — Slide 29 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Example |

o
ofRolERO

Lecture # 11_8.6 — Slide 30 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Example |

The sorting rule is
true for each
node:

omE_Y
A
ofRolERO

Lecture # 11_8.6 — Slide 31 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Example Il

@ Isita BST?

Lecture # 11_8.6 — Slide 32 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

(2

Lecture # 11_8.6 — Slide 33

Example Il

Of

Rel. 10/06/2019

The sorting rule is
true for each

node:
ltisa BST

y

© Savino, Sanchez — 2017- 2019

Example Il

Isita BST ?
(2 :

Lecture # 11_8.6 — Slide 34 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Example Il

The sorting rule is
FALSE for node 7:

@ Itis NOT a BST
\@ 7
KEY[Y] > KEY[X] \®

o O

Lecture # 11_8.6 — Slide 35 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

BST and Reality

« C++ maps are internally represented as binary search
trees.

— While the standard does not require this, it is implicit
In the performance requirements for the data type.

« Key data type requires a total ordering.

— Common examples include numbers ordered by
size, strings ordered lexically, year/month/date
triples ordered chronologically.

« One node is the root node of the tree

— For each node, node.left.key < node.key <
node.right.key

Lecture # 11_8.6 — Slide 36 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

BST and Reality

std::map<std::string, int>::iterator it =
myMap.find ("Key");

e

Since std::string is the key data type, the structure must ensure an

internal organization to make the find function feasible in a reasonable
time.

Lecture # 11_8.6 — Slide 37 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Outline

 Trees introduction

* Binary search trees

. (Traversing algorithms >
« Searching a BST

* Insert and Delete in a BST

 Tree balancing

Lecture # 11_8.6 — Slide 38 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Traversing

It is possible to define three different BST traversing:
— Preorder:
first the node, then its children
— Inorder:

first the left child, then the node, and finally the
right child.

— Postorder:
first the two children, then the node.

Lecture # 11_8.6 — Slide 39 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Preorder

Preorder-Tree-Walk(x)
1 if x # NULL

2 then print key[x]
3 Preorder-Tree-Walk(left[x])
4 Preorder-Tree-Walk(right[x])

Lecture # 11_8.6 — Slide 40 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Inorder

Inorder-Tree-Walk(x)
1 if x = NULL

2 then Inorder-Tree-Walk(left[x])
3 print key[x]
4 Inorder-Tree-Walk(right[x])

Lecture # 11_8.6 — Slide 41 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Postorder

Postorder-Tree-Walk(x)
1 if x = NULL

2 then Postorder-Tree-Walk(left[x])
3 Postorder-Tree-Walk(right[x])
4 print key[x]

Lecture # 11_8.6 — Slide 42 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Notes

 The Inorder traversing visits all the elements in
ascending order (of the key field).

- All traversals have complexity equal to ®(n), since
each node is considered exactly once.

Lecture # 11_8.6 — Slide 43 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Example

O
O} \@ @

N\ \

oJolNC

Lecture # 11_8.6 — Slide 44 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Exercise

Show the three possible traversals for the BST in the
previous slide.

Lecture # 11_8.6 — Slide 45 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Hints for Pre-order

1. Draw a line along the tree
2. Walk through it counterclockwise
3. Visit a node the 15t time you reach it

Lecture # 11_8.6 — Slide 46 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Solution (Preorder)

2 \

10 11

S~
(@)
N

8 15632471391817 20

Lecture # 11_8.6 — Slide 47 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Hints for In-order

1. Draw a line along the tree
2. Walk through it counterclockwise
3. Visit a node the 2" time you reach it

Lecture # 11_8.6 — Slide 48 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Solution (Inorder)

9 234679131517 18 20

Lecture # 11_8.6 — Slide 49 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Hints for Post-order

1. Draw a line along the tree
2. Walk through it counterclockwise
3. Visit a node the last time you reach it

Lecture # 11_8.6 — Slide 50 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Lecture # 11_8.6 — Slide 51

Solution (Postorder)

i
X

L/

\

e 10

A

7

9 [4

18

(> 9
78 0

2439137617 2018 15

Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Outline

 Trees introduction

 Binary search trees

« Traversing algorithms

. (Searching a BST >
* Insert and Delete in a BST

 Tree balancing

Lecture # 11_8.6 — Slide 52 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Searching a BST

BSTs are particularly optimized for search operations:
— Search

— Minimum/Maximum

— Predecessor/Successor.

Their complexity is O(h), where h is the height of the
tree.

Lecture # 11_8.6 — Slide 53 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Tree-Search

Tree-Search(x, k)

1 if x = NULL or k = key[Xx]
then return x

if k < key[x]
then return Tree-Search(left[x], k)
else return Tree-Search(right[x], k)

a A~ ODN

Lecture # 11_8.6 — Slide 54 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Lecture # 11_8.6 — Slide 55

Rel. 10/06/2019

Tree-Search(13)

© Savino, Sanchez — 2017- 2019

Tree-Search (iterative)

Tree-Search-iterative(x, k)
1 while x # NULL and k # key[Xx]

2 do if k < key[Xx]

3 then x « left[x]
4 else x « right[x]
S return x

Lecture # 11_8.6 — Slide 56 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

@ Tree-Search-iterative(13)

Lecture # 11_8.6 — Slide 57 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Min and Max (iterative)

Tree-Minimum(x) ./. ,

1 while left[x] = NULL @ \@ (v) T
2 do x « left[x]

3 return x @ @ @

Tree-Maximum(x)
1 while right[x] = NULL
2 do x « right[x]
3 return x Q @\ @
DRI
O

Lecture # 11_8.6 — Slide 58 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Successor

 Given a node x, find the next element. There are 2

possible situations

g

D
(0
The minimum of the right
subtree

Lecture # 11_8.6 — Slide 59

(g
£

~

J

; o
(D
The first father for which x is in the
left subtree
_/
Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Successor

Tree-Successor(x)
if right[x] # NULL
then return Tree-Minimum(right[x])
y < plx]
while y # NULL and x = right[y]
do X« vy

y < ply]
returny

~N OO O A WODN -

Lecture # 11_8.6 — Slide 60 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Example

O
O} \@ @

N\ \

ORONNG) |

Tree-Successor()

—/

Lecture # 11_8.6 — Slide 61 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Example

Tree-Successor()

—/

Lecture # 11_8.6 — Slide 62 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Example

O
O} \@ @

N\ \

ORONNG) |

Tree-Successor@)

—/

Lecture # 11_8.6 — Slide 63 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Tree-Successor@)

—/

Lecture # 11_8.6 — Slide 64 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Predecessor

Tree-Predecessor(x)
if left[x] # NULL
then return Tree-Maximum(left[x])
y < plx]
while y # NULL and x = left[y]
do X« vy

y < plyl
returny

~N OO O A WODN -

Lecture # 11_8.6 — Slide 65 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Complexity

The complexity for all search operations is O(h).

Lecture # 11_8.6 — Slide 66 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Outline

Trees introduction

Binary search trees

Traversing algorithms

Searching a BST

. Qnsert and Delete in a BST >
 Tree balancing

Lecture # 11_8.6 — Slide 67 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Insert and Delete

 The issue with these operations is to maintain the
sorting criteria while adding or deleting nodes.

Lecture # 11_8.6 — Slide 68 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Insert

* Insert node z with key v:
— Create a new node z with
. left[z] = right[z] = NULL

— The correct insert location is fond by simulating
a search for key[z]

— Left and right pointers are then updated
accordingly

« The new node is always inserted as a leaf.

Lecture # 11_8.6 — Slide 69 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Tree-Insert (I)

Tree-Insert(T, z)
y < NULL @

X < root[T] Search key|[z]
while x # NULL In the tree

doy « Xx 9
if key[z]<key[x]

then x « left[x]
else x « right[x] Q
-

@\Xf NULL

() oz
Lecture # 11_8.6 — Slide 70 Rel. 10/06/2019 © Savino;wanchez — 201 752019

S

~N OO O A WODN -

Tree-Insert (1)

Insert z as
child of y

plz] <y G
9 if y = NULL
10 then root[T] « z
11 else if key[z] < key[y] 9
12 then left[y] « z
13 else right[y] « z
Lecture # 11_8.6 — Slide 71 Rel. 10/06/2019

(o

o

@\x\:NULl

oz
© Savingmz — 20172019

Example

OBRO @

Tree-Insert(13) @ .

Lecture # 11_8.6 — Slide 72 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Tree-Insert(13) @ .

Lecture # 11_8.6 — Slide 73 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Example

y 0

OBRO &

Tree-Insert(13) @ .

Lecture # 11_8.6 — Slide 74 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Delete

Deletion is the most complex operation on a BST.
There are 3 situations, depending on the number of
children of the deleted node.

Lecture # 11_8.6 — Slide 75 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

@% e

Possible cases: 0 children

@
ol

If ‘2’ does not have
children, it can be
safely removed.

-/

Lecture # 11_8.6 — Slide 76 Rel. 10/06/2019

@@\6

© Savino, Sanchez — 2017- 2019

Possible cases: 1 child

BO
N\
@/® Qa

) 10e)
(0
\ If ‘2’ has a child, it \"
becomes the new
child of the father of

‘Z

Lecture # 11_8.6 — Slid¢\ T ~er—Turd6/2019 © Savino, Sanchez — 2017- 2019

'

O

\@ ,

SPOWN
o

Possible cases: 2 children

If ‘2’ has 2 children, it is
necessary to replace ‘z’ with its
successor

Lecture # 11_8.6 — Slide 78 Rel. 10/06/2019

© Savino, Sanchez — 2017- 2019

Tree-Delete (1) @ Y
...................... X
Tree-Delete(T,z) b

if left[z]=NULL or right[z]=NULL
theny « z
else y « Tree-Successor(z)

then x « left[y]

1
2
3
4 if left[y] = NULL
5
6

else x « right[y] y: node to delete

x: only child of y

Lecture # 11_8.6 — Slide 79 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Tree-Delete (1) Q\ @y
plyl”™ ¢
— e

8 then p[x] « p[y]

9 if p[y] = NULL Update x’s father
10 then rOOt[T] =X y is the root? Then x
11 else if y = left[p[yl] | becomes the root
12 then left[p[y]] « x

13 else right[p[y]] « x

If not, link x to the father
of y

Lecture # 11_8.6 — Slide 80 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Tree-Delete (lll)

14 ify #2z

15 then key|[z] « key[y]

16 fields[z] « fields[y]
17 returny

Possibly, copy the
information of the
successor of the node to be
deleted

Lecture # 11_8.6 — Slide 81 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Complexity

The complexity of any update operation on a tree
(insert or delete) is O(h).

Lecture # 11_8.6 — Slide 82 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Outline

Trees introduction
Binary search trees
Traversing algorithms
Searching a BST

Insert and Delete in a BST

. (Tree balancing

Lecture # 11_8.6 — Slide 83 Rel. 10/06/2019

© Savino, Sanchez — 2017- 2019

Tree balancing

« Complexity is O(h), where h is the tree height.
— A balanced tree has

. h=log, n
— A totally unbalanced tree has
. h=n

— Therefore the operations on a BST have a
variable complexity between O(log, n) and O(n)

Lecture # 11_8.6 — Slide 84 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Exercise

« We want to build a BST storing all numbers
between 0 and 9.

— In which sequence do we have to insert the
nodes in order to have a balanced tree?

— In which sequence do we have to insert the
nodes in order to have a totally unbalanced tree?

Lecture # 11_8.6 — Slide 85 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Solution (1)

@ @ Insert() order: 6,3,1,0, 2, 5,

4,8,7,9

/

Lecture # 11_8.6 — Slide 86 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Solution (1)

®
@
®
@
& |

@ Insert() order: 9, 8, 7, 6, 5, 4,
3,2,1,0

/

Lecture # 11_8.6 — Slide 87 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Solution (1)

®
o
@

5)
Y

— —
@@

@ Does it look like a
balanced one?

|

N— _/

Lecture # 11_8.6 — Slide 88 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Solution (1)

H m‘@H

BST are not balanced by definition. In
order to have a balanced tree you
must implement balancing techniques

Self-balancing BST

N _/

Lecture # 11_8.6 — Slide 89 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

1
References

« A.V. Aho, J.E. Hopcroft, J.D. Ullman:
“Data Structures and Algorithms,”
Addison Wesley, Reading MA (USA), 1983
pp.- 75-106

e G.H. Gonnet:

“Handbook of Algorithms and Data Structures,”
Addison Wesley, Reading MA (USA), 1984, pp. 69-
117

 J. Esakow. T. Weiss
“Data structure: an advanced approach using C,”

Prentice Hall, Englewood Cliffs NJ (USA), 1982, pp.
38-59

Lecture # 11_8.6 — Slide 90 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

References @

 E. Horowitz, S. Sahni:
“Fundamentals of Computer Algorithms,”
Pittman, London (UK), 1978
pp.- 203-271

 R. Sedgewick:
“Algorithms in C,”
Addison Wesley, Reading MA (USA), 1990
pp.- 35-50

« C.J. Van Wyk:
“Data Structures and C Programs,” Addison
Wesley, Reading MA (USA), 1988
pp 159-176

Lecture # 11_8.6 — Slide 91 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

3
References

« M.A. Weiss:
“Data Structures and Algorithm Analysis,”
The Benjamin/Cummings Publishing Company,
Redwood City, CA (USA), 1992, pp. 87-98

« R.J. Wilson:
“Introduzione alla teoria dei grafi,”
Cremonese, Roma 1978, pp. 57-76

* N. Wirth:
“Algorithms + Data Structures = Programs,”
Prentice Hall, Englewood Cliffs NJ (USA), 1976
pp.- 169-263

Lecture # 11_8.6 — Slide 92 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019

Manble ABTioxu, KannHkoBmnickuin pamoH, Pecnybnukn benapycb

