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Disclaimer

 We disclaim any warranties or representations as
to the accuracy or completeness of this material.

 Materials are provided “as is” without warranty of
any kind, either express or implied, including
without limitation, warranties of merchantability,
fitness for a particular purpose, and non-
infringement.

 Under no circumstances shall we be liable for any
loss, damage, liability or expense incurred or
suffered which is claimed to have resulted from
use of this material.
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Goal

— This lecture aims at presenting the Tree
container, the related operations, and the visiting
techniques.
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Prerequisites

* Lectures:
— 11_7.x Pointers & Dynamic Memory
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Further readings

« Students interested in a deeper look at the covered
topics can refer, for instance, to the books listed at
the end of the lecture.
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Tree

A tree is an ADT that

represents a

hierarchical structure.

Containing a root
node and a set of
linked nodes known
as children. There
exists only one path
from the root to any

/

Lecture # 11_8.6 — Slide 9 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019



Family trees
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Indexes

 Book
- C1
. s1.1
. 1.2
- C2
. 2.1
—-s2.1.1
—s2.1.2
. 2.2
. 2.3
- C3
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Formal definition

A treeis an acyclic data structure composed by
nodes and edges accessed beginning at a root
node

— Each node is either a leaf or an internal node

— An internal node has 1 or more children, nodes
that can be reached directly from that internal
node.

— The internal node is said to be the parent of its
child nodes
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Tree terminology

* Leaf: node with no children
« Siblings: two or more nodes with the same parent.

 Path: a sequence of nodes n4, n,, ... , N, such that n,
is the parent of n;,, for1<i<k

— the length of a path is the number of edges in the
path, or 1 less than the number of nodes in it

 Depth or level: length of the path from root to the
current node (depth of root = 0)

* Height: length of the longest path from root to any
leaf

 Degree: number of subtrees of a node.
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Balanced trees

« A balanced tree is one where no node has two
subtrees that differ in height by more than 1

— visually, balanced trees look wider and flatter

<—

balanced unbalanced
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Tree path length and depth

Level
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Tree example

o root
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Trees representing arithmetic expressions

A tree representing an arithmetic expression follows
these rules:

 Leaves: Operands (constants or variables)
 Non-leaves nodes: operators.
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Trees representing arithmetic expressions

Example:
(a+b/c)*(d-e*f)
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Outline
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Binary Search Trees - BST

Binary Search Trees (BST) are containers efficiently
supporting the following operations:

Search, Minimum, Maximum, Predecessor,
Successor, Insert, Delete.

They are a good solution to implement dictionaries or
priority queues.
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Goals

BSTs are defined in such a way that the complexity of
each operation is proportional to the height h of the
tree.

For a complete and balanced tree with n nodes, the
complexity is &(log n) in the worst case.

For a fully unbalanced tree, the worst case is O(n).
In average we expect ®(log n).
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Definitions

Binary Search Tree:

— Tree: hierarchical structure with ONE root and
ONLY ONE path from the root to any node

— Binary: each node has at most two children (left
and right) and (except for the root) exactly one
father (p)

— Search: the nodes have a key, used as a sorting
criteria
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BST

A 2" degree tree, may be a BST

ROOT

Lecture # 11_8.6 — Slide 27 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019



Sorting rule ()

For each node x:
— For all nodes in the left tree:

key[y] < key[x]
— For all nodes in the right tree:

key[y] = key[X]

— —

The definition is recursive along the
tree!

N—] _
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Sorting rule (1)
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Example |

o
ofRolERO
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Example |

The sorting rule is
true for each
node:

omE_Y
A
ofRolERO
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Example Il

@ Isita BST?
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(2
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Example Il

Isita BST ?
(2 :
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Example Il

The sorting rule is
FALSE for node 7:

@ Itis NOT a BST
\@ 7
KEY[Y] > KEY[X] \®

o O
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BST and Reality

« C++ maps are internally represented as binary search
trees.

— While the standard does not require this, it is implicit
In the performance requirements for the data type.

« Key data type requires a total ordering.

— Common examples include numbers ordered by
size, strings ordered lexically, year/month/date
triples ordered chronologically.

« One node is the root node of the tree

— For each node, node.left.key < node.key <
node.right.key
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BST and Reality

std::map<std::string, int>::iterator it =
myMap.find ( "Key" );

e

Since std::string is the key data type, the structure must ensure an

internal organization to make the find function feasible in a reasonable
time.
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Traversing

It is possible to define three different BST traversing:
— Preorder:
first the node, then its children
— Inorder:

first the left child, then the node, and finally the
right child.

— Postorder:
first the two children, then the node.
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Preorder

Preorder-Tree-Walk(x)
1 if x # NULL

2 then print key[x]
3 Preorder-Tree-Walk(left[x])
4 Preorder-Tree-Walk(right[x])
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Inorder

Inorder-Tree-Walk(x)
1 if x = NULL

2 then Inorder-Tree-Walk(left[x])
3 print key[x]
4 Inorder-Tree-Walk(right[x])
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Postorder

Postorder-Tree-Walk(x)
1 if x = NULL

2 then Postorder-Tree-Walk(left[x])
3 Postorder-Tree-Walk(right[x])
4 print key[x]
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Notes

 The Inorder traversing visits all the elements in
ascending order (of the key field).

- All traversals have complexity equal to ®(n), since
each node is considered exactly once.
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Example
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Exercise

Show the three possible traversals for the BST in the
previous slide.
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Hints for Pre-order

1. Draw a line along the tree
2. Walk through it counterclockwise
3. Visit a node the 15t time you reach it
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Solution (Preorder)

2 \

10 11

S~
(@)
N

8 15632471391817 20
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Hints for In-order

1. Draw a line along the tree
2. Walk through it counterclockwise
3. Visit a node the 2" time you reach it

Lecture # 11_8.6 — Slide 48 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019



Solution (Inorder)

9 234679131517 18 20

Lecture # 11_8.6 — Slide 49 Rel. 10/06/2019 © Savino, Sanchez — 2017- 2019



Hints for Post-order

1. Draw a line along the tree
2. Walk through it counterclockwise
3. Visit a node the last time you reach it
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Solution (Postorder)
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Searching a BST

BSTs are particularly optimized for search operations:
— Search

— Minimum/Maximum

— Predecessor/Successor.

Their complexity is O(h), where h is the height of the
tree.
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Tree-Search

Tree-Search(x, k)

1 if x = NULL or k = key[Xx]
then return x

if k < key[x]
then return Tree-Search(left[x], k)
else return Tree-Search(right[x], k)

a A~ ODN
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Tree-Search (iterative)

Tree-Search-iterative(x, k)
1 while x # NULL and k # key[Xx]

2 do if k < key[Xx]

3 then x « left[x]
4 else x « right[x]
S return x
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@ Tree-Search-iterative(13)
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Min and Max (iterative)

Tree-Minimum(x) ./. ,

1 while left[x] = NULL @ \@ (v) T
2 do x « left[x]

3 return x @ @ @

Tree-Maximum(x)
1 while right[x] = NULL
2 do x « right[x]
3 return x Q @\ @
DRI
O
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Successor

 Given a node x, find the next element. There are 2

possible situations

g

D
(0
The minimum of the right
subtree
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Successor

Tree-Successor(x)
if right[x] # NULL
then return Tree-Minimum(right[x])
y < plx]
while y # NULL and x = right[y]
do X« vy

y < ply]
returny

~N OO O A WODN -
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Example

O
O} \@ @

N\ \

ORONNG) |

Tree-Successor()

—/
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Example

Tree-Successor()

—/
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Example

O
O} \@ @

N\ \

ORONNG) |

Tree-Successor@)

—/
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Tree-Successor@)

—/
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Predecessor

Tree-Predecessor(x)
if left[x] # NULL
then return Tree-Maximum(left[x])
y < plx]
while y # NULL and x = left[y]
do X« vy

y < plyl
returny

~N OO O A WODN -
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Complexity

The complexity for all search operations is O(h).
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Insert and Delete

 The issue with these operations is to maintain the
sorting criteria while adding or deleting nodes.
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Insert

* Insert node z with key v:
— Create a new node z with
. left[z] = right[z] = NULL

— The correct insert location is fond by simulating
a search for key[z]

— Left and right pointers are then updated
accordingly

« The new node is always inserted as a leaf.
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Tree-Insert (I)

Tree-Insert(T, z)
y < NULL @

X < root[T] Search key|[z]
while x # NULL In the tree

doy « Xx 9
if key[z]<key[x]

then x « left[x]
else x « right[x] Q
-

@\Xf NULL

( ) oz
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Tree-Insert (1)

Insert z as
child of y

plz] <y G
9 if y = NULL
10 then root[T] « z
11 else if key[z] < key[y] 9
12 then left[y] « z
13 else right[y] « z
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Example

OBRO @

Tree-Insert(13) @ .
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Tree-Insert(13) @ .
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Example

y 0

OBRO &

Tree-Insert(13) @ .
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Delete

Deletion is the most complex operation on a BST.
There are 3 situations, depending on the number of
children of the deleted node.
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@% e

Possible cases: 0 children

@
ol

If ‘2’ does not have
children, it can be
safely removed.

-/
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Possible cases: 1 child

BO
N\
@/® Qa

) 10e)
(0
\ If ‘2’ has a child, it \"
becomes the new
child of the father of

‘Z
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'

O

\@ ,

SPOWN
o

Possible cases: 2 children

If ‘2’ has 2 children, it is
necessary to replace ‘z’ with its
successor
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Tree-Delete (1) @ Y
...................... X
Tree-Delete(T,z) b

if left[z]=NULL or right[z]=NULL
theny « z
else y « Tree-Successor(z)

then x « left[y]

1
2
3
4 if left[y] = NULL
5
6

else x « right[y] y: node to delete

x: only child of y
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Tree-Delete (1) Q\ @y
plyl”™ ¢
— e

8 then p[x] « p[y]

9 if p[y] = NULL Update x’s father
10 then rOOt[T] =X y is the root? Then x
11 else if y = left[p[yl] | becomes the root
12 then left[p[y]] « x

13 else right[p[y]] « x

If not, link x to the father
of y
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Tree-Delete (lll)

14 ify #2z

15 then key|[z] « key[y]

16 fields[z] « fields[y]
17 returny

Possibly, copy the
information of the
successor of the node to be
deleted
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Complexity

The complexity of any update operation on a tree
(insert or delete) is O(h).
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Tree balancing

« Complexity is O(h), where h is the tree height.
— A balanced tree has

. h=log, n
— A totally unbalanced tree has
. h=n

— Therefore the operations on a BST have a
variable complexity between O(log, n) and O(n)
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Exercise

« We want to build a BST storing all numbers
between 0 and 9.

— In which sequence do we have to insert the
nodes in order to have a balanced tree?

— In which sequence do we have to insert the
nodes in order to have a totally unbalanced tree?
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Solution (1)

@ @ Insert() order: 6,3,1,0, 2, 5,

4,8,7,9

/
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Solution (1)

®
@
®
@
& |

@ Insert() order: 9, 8, 7, 6, 5, 4,
3,2,1,0

/
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Solution (1)

®
o
@

5)
Y

— —
@@

@ Does it look like a
balanced one?

|

N— _/
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Solution (1)

H m‘@H

BST are not balanced by definition. In
order to have a balanced tree you
must implement balancing techniques

Self-balancing BST

N _/
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