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Disclaimer

• We disclaim any warranties or representations as 
to the accuracy or completeness of this material.

• Materials are provided “as is” without warranty of 
any kind, either express or implied, including 
without limitation, warranties of merchantability, 
fitness for a particular purpose, and non-
infringement. 

• Under no circumstances shall we be liable for any 
loss, damage, liability or expense incurred or 
suffered which is claimed to have resulted from 
use of this material. 
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Goal

– This lecture aims at presenting the Tree 
container, the related operations, and the visiting 
techniques.
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Prerequisites 

• Lectures:
– 11_7.x Pointers & Dynamic Memory 
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Further readings

• Students interested in a deeper look at the covered 
topics can refer, for instance, to the books listed at 
the end of the lecture.
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Outline

• Trees introduction
• Binary search trees
• Traversing algorithms
• Searching a BST
• Insert and Delete in a BST
• Tree balancing
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Outline

• Trees introduction
• Binary search trees
• Traversing algorithms
• Searching a BST
• Insert and Delete in a BST
• Tree balancing
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A tree is an ADT that 
represents a 

hierarchical structure. 
Containing a root 
node and a set of 

linked nodes known 
as children. There 

exists only one path 
from the root to any 

node.

Tree
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Family trees 

One Hundred Years of Solitude, by GGM
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Indexes

• Book
– C1

. s1.1

. s1.2
– C2

. s2.1
– s2.1.1
– s2.1.2

. s2.2

. s2.3
– C3
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Indexes

• Book
– C1

. s1.1

. s1.2
– C2

. s2.1
– s2.1.1
– s2.1.2

. s2.2

. s2.3
– C3

Book

s1.1 s1.2 s2.1 s2.2 s2.3

s2.1.1 s2.1.2

C1 C2 C3
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Formal definition

• A tree is an acyclic data structure composed by 
nodes and edges accessed beginning at a root 
node
– Each node is either a leaf or an internal node
– An internal node has 1 or more children, nodes 

that can be reached directly from that internal 
node. 

– The internal node is said to be the parent of its 
child nodes
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Tree diagram

edges
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Tree diagram

Subtrees

edges
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Tree terminology

• Leaf: node with no children
• Siblings: two or more nodes with the same parent.
• Path: a sequence of nodes n1, n2, … , nk such that ni

is the parent of ni+1 for 1 £ i < k
– the length of a path is the number of edges in the 

path, or 1 less than the number of nodes in it
• Depth or level: length of the path from root to the 

current node (depth of root = 0)
• Height: length of the longest path from root to any 

leaf
• Degree: number of subtrees of a node. 
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Balanced trees

• A balanced tree is one where no node has two 
subtrees that differ in height by more than 1
– visually, balanced trees look wider and flatter
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Tree path length and depth
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Tree example
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Trees representing arithmetic expressions 

A tree representing an arithmetic expression follows 
these rules:
• Leaves: Operands (constants or variables)
• Non-leaves nodes: operators. 
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Trees representing arithmetic expressions 

Example:
(a+b/c)*(d-e*f)

a / d *

b c e f

+ -

*
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Outline

• Trees introduction
• Binary search trees
• Traversing algorithms
• Searching a BST
• Insert and Delete in a BST
• Tree balancing
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Binary Search Trees - BST

Binary Search Trees (BST) are containers efficiently 
supporting the following operations: 
Search, Minimum, Maximum, Predecessor, 
Successor, Insert, Delete.

They are a good solution to implement dictionaries or 
priority queues.
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Goals

BSTs are defined in such a way that the complexity of 
each operation is proportional to the height h of the 
tree.
For a complete and balanced tree with n nodes, the 
complexity is Q(log n) in the worst case. 
For a fully unbalanced tree, the worst case is O(n).
In average we expect Q(log n).
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Definitions

Binary Search Tree:
– Tree: hierarchical structure with ONE root and 

ONLY ONE path from the root to any node
– Binary: each node has at most two children (left 

and right) and (except for the root) exactly one 
father (p)

– Search: the nodes have a key, used as a sorting 
criteria
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BST

A 2nd degree tree, may be a BST

ROOT

LEAF
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Sorting rule (I)

•For each node x:
– For all nodes in the left tree:

key[y] £ key[x]
– For all nodes in the right tree: 

key[y] ³ key[x]

The definition is recursive along the 
tree!
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Sorting rule (II)

x

£ x ³ x
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Example I

5

3 7

2 5 8

Is it a BST ?



Lecture # 11_8.6 – Slide 31 Rel.  10/06/2019 © Savino, Sanchez – 2017- 2019

Example I
The sorting rule is 

true for each 
node:

It is a BST
5

3 7

2 5 8
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Example II

5

3

7

2

5

8

Is it a BST?
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Example II

5

3

7

2

5

8

The sorting rule is 
true for each 

node:
It is a BST
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Example III

9

3

7

2

5

8

Is it a BST ?
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Example III

9

3

7

2

5

8

The sorting rule is 
FALSE for node 7:

It is NOT a BST

KEY[Y] > KEY[X]
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BST and Reality

• C++ maps are internally represented as binary search
trees. 
– While the standard does not require this, it is implicit

in the performance requirements for the data type. 
• Key data type requires a total ordering. 

– Common examples include numbers ordered by 
size, strings ordered lexically, year/month/date 
triples ordered chronologically. 

• One node is the root node of the tree
– For each node, node.left.key < node.key < 

node.right.key
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BST and Reality

std::map<std::string, int>::iterator it = 
myMap.find ( "Key" );

Since std::string is the key data type, the structure must ensure an 
internal organization to make the find function feasible in a reasonable 
time.
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Outline

• Trees introduction
• Binary search trees
• Traversing algorithms
• Searching a BST
• Insert and Delete in a BST
• Tree balancing
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Traversing

It is possible to define three different BST traversing:
– Preorder: 

first the node, then its children 
– Inorder: 

first the left child, then the node, and finally the 
right child. 

– Postorder: 
first the two children, then the node.
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Preorder

Preorder-Tree-Walk(x)
1 if x ¹ NULL
2 then print key[x]
3 Preorder-Tree-Walk(left[x])
4 Preorder-Tree-Walk(right[x])
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Inorder

Inorder-Tree-Walk(x)
1 if x ¹ NULL
2 then Inorder-Tree-Walk(left[x])
3 print key[x]
4 Inorder-Tree-Walk(right[x])
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Postorder

Postorder-Tree-Walk(x)
1 if x ¹ NULL
2 then Postorder-Tree-Walk(left[x])
3 Postorder-Tree-Walk(right[x]) 
4 print key[x]
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Notes

• The Inorder traversing visits all the elements in 
ascending order (of the key field).

• All traversals have complexity equal to Q(n), since 
each node is considered exactly once. 



Lecture # 11_8.6 – Slide 44 Rel.  10/06/2019 © Savino, Sanchez – 2017- 2019

Example

15

6 18

17 203 7

2 4 13

9
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Exercise

Show the three possible traversals for the BST in the 
previous slide.
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Hints for Pre-order

1. Draw a line along the tree
2. Walk through it counterclockwise
3. Visit a node the 1st time you reach it
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Solution (Preorder)

15

6 18

17 203 7

2 4 13

9

1

2

3

4 5

6

7

8

9

10 11

15 6 3 2 4 7 13 9 18 17 20
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Hints for In-order

1. Draw a line along the tree
2. Walk through it counterclockwise
3. Visit a node the 2nd time you reach it
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Solution (Inorder)

15

6 18

17 203 7

2 4 13

9

1

2

3

4

5

6

7

8

9

10

11

2 3 4 6 7 9 13 15 17 18 20
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Hints for Post-order

1. Draw a line along the tree
2. Walk through it counterclockwise
3. Visit a node the last time you reach it
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Solution (Postorder)

15

6 18

17 203 7

2 4 13

9

1
2

3

4

5

6

7

8
9

10

11

2 4 3 9 13 7 6 17 20 18 15



Lecture # 11_8.6 – Slide 52 Rel.  10/06/2019 © Savino, Sanchez – 2017- 2019

Outline

• Trees introduction
• Binary search trees
• Traversing algorithms
• Searching a BST
• Insert and Delete in a BST
• Tree balancing
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Searching a BST

BSTs are particularly optimized for search operations: 
– Search
– Minimum/Maximum
– Predecessor/Successor.

Their complexity is O(h), where h is the height of the 
tree. 
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Tree-Search

Tree-Search(x, k)
1 if x = NULL or k = key[x]
2 then return x
3 if k < key[x]
4 then return Tree-Search(left[x], k)
5 else return Tree-Search(right[x], k)
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Example

15

6 18

17 203 7

2 4 13

9
Tree-Search(13)
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Tree-Search (iterative)

Tree-Search-iterative(x, k)
1 while x ¹ NULL and k ¹ key[x]
2 do if k < key[x]
3 then x ¬ left[x]
4 else x ¬ right[x]
5 return x
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Example

15

6 18

17 203 7

2 4 13

9
Tree-Search-iterative(13)



Lecture # 11_8.6 – Slide 58 Rel.  10/06/2019 © Savino, Sanchez – 2017- 2019

Min and Max (iterative)

Tree-Minimum(x)
1 while left[x] ¹ NULL
2 do x ¬ left[x]
3 return x

Tree-Maximum(x)
1 while right[x] ¹ NULL
2 do x ¬ right[x]
3 return x
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Successor

• Given a node x, find the next element. There are 2 
possible situations

x

p[x] x

p[x]The minimum of the right 
subtree

The first father for which x is in the 
left subtree
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Successor

Tree-Successor(x)
1 if right[x] ¹ NULL
2 then return Tree-Minimum(right[x])
3 y ¬ p[x]
4 while y ¹ NULL and x = right[y]
5 do x ¬ y
6 y ¬ p[y]
7 return y
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Example

15

6 18

17 203 7

2 4 13

9
Tree-Successor(7)
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Example

15

6 18

17 203 7

2 4 13

9
Tree-Successor(7)
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Example

15

6 18

17 203 7

2 4 13

9
Tree-Successor(4)
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Example

15

6 18

17 203 7

2 4 13

9
Tree-Successor(4)
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Predecessor

Tree-Predecessor(x)
1 if left[x] ¹ NULL
2 then return Tree-Maximum(left[x])
3 y ¬ p[x]
4 while y ¹ NULL and x = left[y]
5 do x ¬ y
6 y ¬ p[y]
7 return y
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Complexity

•The complexity for all search operations is O(h).
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Outline

• Trees introduction
• Binary search trees
• Traversing algorithms
• Searching a BST
• Insert and Delete in a BST
• Tree balancing
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Insert and Delete

• The issue with these operations is to maintain the 
sorting criteria while adding or deleting nodes.
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Insert

• Insert node z with key v:
– Create a new node z with

. left[z] = right[z] = NULL
– The correct insert location is fond by simulating 

a search for key[z]
– Left and right pointers are then updated 

accordingly
• The new node is always inserted as a leaf.
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Tree-Insert (I)

Tree-Insert(T, z)
1 y ¬ NULL
2 x ¬ root[T]
3 while x ¹ NULL
4 do y ¬ x
5 if key[z]<key[x]
6 then x ¬ left[x]
7 else x ¬ right[x]

Search key[z] 
in the tree

y

z

x=NULL
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Tree-Insert (II)

8 p[z] ¬ y
9 if y = NULL
10 then root[T] ¬ z
11 else if key[z] < key[y]
12 then left[y] ¬ z
13 else right[y] ¬ z

y

z

x=NULL

Insert z as 
child of y
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Example

12

5 18

15 202 9

17

13
Tree-Insert(13) z
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Example

12

5 18

15 202 9

17

Tree-Insert(13)

13

z

y

x

13
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Example

12

5 18

15 202 9

17

Tree-Insert(13) z

y

13
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Delete

Deletion is the most complex operation on a BST. 
There are 3 situations, depending on the number of 
children of the deleted node. 
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Possible cases: 0 children

1215

5 16

3 12 20

10 13

6

7

18 23

1215

5 16

3 12 20

10 18 23
z

6

7

If ‘z’ does not have 
children, it can be 
safely removed.
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Possible cases: 1 child

1215

5 16

3 12 20

10 13 18 23

1215

5

3 12 20

10 18 23

z

6

7

6

7

If ‘z’ has a child, it 
becomes the new 

child of the father of 
‘z’

13
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Possible cases: 2 children

1215

5 16

3 12 20

10 13 18 23

1215

5 16

3 12 20

10 18 23

z z

6

7

6

7

13

If ‘z’ has 2 children, it is 
necessary to replace ‘z’ with its 

successor
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Tree-Delete (I)

Tree-Delete(T, z)
1 if left[z]=NULL or right[z]=NULL
2 then y ¬ z
3 else y ¬ Tree-Successor(z)
4 if left[y] ¹ NULL
5 then x ¬ left[y]
6 else x ¬ right[y] y: node to delete

x: only child of y

Z

y

x
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Tree-Delete (II)

7 if x ¹ NULL
8 then p[x] ¬ p[y]
9 if p[y] = NULL
10 then root[T] = x
11 else if y = left[p[y]]
12 then left[p[y]] ¬ x
13 else right[p[y]] ¬ x

If not, link x to the father 
of y

Update x’s father

y is the root? Then x 
becomes the root

Z
y

xp[y]
p[x]
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Tree-Delete (III)

14 if y ¹ z
15 then key[z] ¬ key[y]
16 fields[z] ¬ fields[y]
17 return y

Possibly, copy the 
information of the 

successor of the node to be 
deleted
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Complexity

The complexity of any update operation on a tree 
(insert or delete) is O(h).
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Outline

• Trees introduction
• Binary search trees
• Traversing algorithms
• Searching a BST
• Insert and Delete in a BST
• Tree balancing
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Tree balancing

• Complexity is O(h), where h is the tree height.
– A balanced tree has

. h = log2 n
– A totally unbalanced tree has 

. h = n
– Therefore the operations on a BST have a 

variable complexity between O(log2 n) and O(n)
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• We want to build a BST storing all numbers 
between 0 and 9.
– In which sequence do we have to insert the 

nodes in order to have a balanced tree? 
– In which sequence do we have to insert the 

nodes in order to have a totally unbalanced tree? 

Exercise
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Solution (I)

6

3 8

1 5 7 9

0 2 4
Insert() order: 6, 3, 1, 0, 2, 5, 

4, 8, 7, 9
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Solution (II)

9

Insert() order: 9, 8, 7, 6, 5, 4, 
3, 2, 1, 0

8
7

6
5

4
3

2
1

0
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Solution (II)

9

Insert() order: 9, 8, 7, 6, 5, 4, 
3, 2, 1, 0

8
7

6
5

4
3

2
1

0
Does it look like a 

balanced one?
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Solution (II)

9

Insert() order: 9, 8, 7, 6, 5, 4, 
3, 2, 1, 0

8
7

6
5

4
3

2
1

0

BST are not balanced by definition. In 
order to have a balanced tree you 

must implement balancing techniques

Self-balancing BST
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