
Lecture
11_8.6

Trees
& Traversals

Alessandro SAVINO
Politecnico di Torino (Italy)
alessandro.savino@polito.it

www.testgroup.polito.it

http://www.testgroup.polito.it/

Lecture # 11_8.6 – Slide 2 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

License Information

This work is licensed under the
Creative Commons BY-NC

License

To view a copy of the license, visit:
http://creativecommons.org/licenses/by-nc/3.0/legalcode

Lecture # 11_8.6 – Slide 3 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Disclaimer

• We disclaim any warranties or representations as
to the accuracy or completeness of this material.

• Materials are provided “as is” without warranty of
any kind, either express or implied, including
without limitation, warranties of merchantability,
fitness for a particular purpose, and non-
infringement.

• Under no circumstances shall we be liable for any
loss, damage, liability or expense incurred or
suffered which is claimed to have resulted from
use of this material.

Lecture # 11_8.6 – Slide 4 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Goal

– This lecture aims at presenting the Tree
container, the related operations, and the visiting
techniques.

Lecture # 11_8.6 – Slide 5 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Prerequisites

• Lectures:
– 11_7.x Pointers & Dynamic Memory

Lecture # 11_8.6 – Slide 6 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Further readings

• Students interested in a deeper look at the covered
topics can refer, for instance, to the books listed at
the end of the lecture.

Lecture # 11_8.6 – Slide 7 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Outline

• Trees introduction
• Binary search trees
• Traversing algorithms
• Searching a BST
• Insert and Delete in a BST
• Tree balancing

Lecture # 11_8.6 – Slide 8 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Outline

• Trees introduction
• Binary search trees
• Traversing algorithms
• Searching a BST
• Insert and Delete in a BST
• Tree balancing

Lecture # 11_8.6 – Slide 9 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

A tree is an ADT that
represents a

hierarchical structure.
Containing a root
node and a set of

linked nodes known
as children. There

exists only one path
from the root to any

node.

Tree

Lecture # 11_8.6 – Slide 10 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Family trees

One Hundred Years of Solitude, by GGM

Lecture # 11_8.6 – Slide 11 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Indexes

• Book
– C1

. s1.1

. s1.2
– C2

. s2.1
– s2.1.1
– s2.1.2

. s2.2

. s2.3
– C3

Lecture # 11_8.6 – Slide 12 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Indexes

• Book
– C1

. s1.1

. s1.2
– C2

. s2.1
– s2.1.1
– s2.1.2

. s2.2

. s2.3
– C3

Book

s1.1 s1.2 s2.1 s2.2 s2.3

s2.1.1 s2.1.2

C1 C2 C3

Lecture # 11_8.6 – Slide 13 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Formal definition

• A tree is an acyclic data structure composed by
nodes and edges accessed beginning at a root
node
– Each node is either a leaf or an internal node
– An internal node has 1 or more children, nodes

that can be reached directly from that internal
node.

– The internal node is said to be the parent of its
child nodes

Lecture # 11_8.6 – Slide 14 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Tree diagram

edges

Lecture # 11_8.6 – Slide 15 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Tree diagram

Subtrees

edges

Lecture # 11_8.6 – Slide 16 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Tree terminology

• Leaf: node with no children
• Siblings: two or more nodes with the same parent.
• Path: a sequence of nodes n1, n2, … , nk such that ni

is the parent of ni+1 for 1 £ i < k
– the length of a path is the number of edges in the

path, or 1 less than the number of nodes in it
• Depth or level: length of the path from root to the

current node (depth of root = 0)
• Height: length of the longest path from root to any

leaf
• Degree: number of subtrees of a node.

Lecture # 11_8.6 – Slide 17 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Balanced trees

• A balanced tree is one where no node has two
subtrees that differ in height by more than 1
– visually, balanced trees look wider and flatter

Lecture # 11_8.6 – Slide 18 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Tree path length and depth

Lecture # 11_8.6 – Slide 19 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Tree example

Lecture # 11_8.6 – Slide 20 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Trees representing arithmetic expressions

A tree representing an arithmetic expression follows
these rules:
• Leaves: Operands (constants or variables)
• Non-leaves nodes: operators.

Lecture # 11_8.6 – Slide 21 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Trees representing arithmetic expressions

Example:
(a+b/c)*(d-e*f)

a / d *

b c e f

+ -

*

Lecture # 11_8.6 – Slide 23 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Outline

• Trees introduction
• Binary search trees
• Traversing algorithms
• Searching a BST
• Insert and Delete in a BST
• Tree balancing

Lecture # 11_8.6 – Slide 24 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Binary Search Trees - BST

Binary Search Trees (BST) are containers efficiently
supporting the following operations:
Search, Minimum, Maximum, Predecessor,
Successor, Insert, Delete.

They are a good solution to implement dictionaries or
priority queues.

Lecture # 11_8.6 – Slide 25 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Goals

BSTs are defined in such a way that the complexity of
each operation is proportional to the height h of the
tree.
For a complete and balanced tree with n nodes, the
complexity is Q(log n) in the worst case.
For a fully unbalanced tree, the worst case is O(n).
In average we expect Q(log n).

Lecture # 11_8.6 – Slide 26 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Definitions

Binary Search Tree:
– Tree: hierarchical structure with ONE root and

ONLY ONE path from the root to any node
– Binary: each node has at most two children (left

and right) and (except for the root) exactly one
father (p)

– Search: the nodes have a key, used as a sorting
criteria

Lecture # 11_8.6 – Slide 27 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

BST

A 2nd degree tree, may be a BST

ROOT

LEAF

Lecture # 11_8.6 – Slide 28 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Sorting rule (I)

•For each node x:
– For all nodes in the left tree:

key[y] £ key[x]
– For all nodes in the right tree:

key[y] ³ key[x]

The definition is recursive along the
tree!

Lecture # 11_8.6 – Slide 29 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Sorting rule (II)

x

£ x ³ x

Lecture # 11_8.6 – Slide 30 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Example I

5

3 7

2 5 8

Is it a BST ?

Lecture # 11_8.6 – Slide 31 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Example I
The sorting rule is

true for each
node:

It is a BST
5

3 7

2 5 8

Lecture # 11_8.6 – Slide 32 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Example II

5

3

7

2

5

8

Is it a BST?

Lecture # 11_8.6 – Slide 33 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Example II

5

3

7

2

5

8

The sorting rule is
true for each

node:
It is a BST

Lecture # 11_8.6 – Slide 34 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Example III

9

3

7

2

5

8

Is it a BST ?

Lecture # 11_8.6 – Slide 35 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Example III

9

3

7

2

5

8

The sorting rule is
FALSE for node 7:

It is NOT a BST

KEY[Y] > KEY[X]

Lecture # 11_8.6 – Slide 36 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

BST and Reality

• C++ maps are internally represented as binary search
trees.
– While the standard does not require this, it is implicit

in the performance requirements for the data type.
• Key data type requires a total ordering.

– Common examples include numbers ordered by
size, strings ordered lexically, year/month/date
triples ordered chronologically.

• One node is the root node of the tree
– For each node, node.left.key < node.key <

node.right.key

Lecture # 11_8.6 – Slide 37 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

BST and Reality

std::map<std::string, int>::iterator it =
myMap.find ("Key");

Since std::string is the key data type, the structure must ensure an
internal organization to make the find function feasible in a reasonable
time.

Lecture # 11_8.6 – Slide 38 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Outline

• Trees introduction
• Binary search trees
• Traversing algorithms
• Searching a BST
• Insert and Delete in a BST
• Tree balancing

Lecture # 11_8.6 – Slide 39 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Traversing

It is possible to define three different BST traversing:
– Preorder:

first the node, then its children
– Inorder:

first the left child, then the node, and finally the
right child.

– Postorder:
first the two children, then the node.

Lecture # 11_8.6 – Slide 40 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Preorder

Preorder-Tree-Walk(x)
1 if x ¹ NULL
2 then print key[x]
3 Preorder-Tree-Walk(left[x])
4 Preorder-Tree-Walk(right[x])

Lecture # 11_8.6 – Slide 41 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Inorder

Inorder-Tree-Walk(x)
1 if x ¹ NULL
2 then Inorder-Tree-Walk(left[x])
3 print key[x]
4 Inorder-Tree-Walk(right[x])

Lecture # 11_8.6 – Slide 42 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Postorder

Postorder-Tree-Walk(x)
1 if x ¹ NULL
2 then Postorder-Tree-Walk(left[x])
3 Postorder-Tree-Walk(right[x])
4 print key[x]

Lecture # 11_8.6 – Slide 43 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Notes

• The Inorder traversing visits all the elements in
ascending order (of the key field).

• All traversals have complexity equal to Q(n), since
each node is considered exactly once.

Lecture # 11_8.6 – Slide 44 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Example

15

6 18

17 203 7

2 4 13

9

Lecture # 11_8.6 – Slide 45 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Exercise

Show the three possible traversals for the BST in the
previous slide.

Lecture # 11_8.6 – Slide 46 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Hints for Pre-order

1. Draw a line along the tree
2. Walk through it counterclockwise
3. Visit a node the 1st time you reach it

Lecture # 11_8.6 – Slide 47 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Solution (Preorder)

15

6 18

17 203 7

2 4 13

9

1

2

3

4 5

6

7

8

9

10 11

15 6 3 2 4 7 13 9 18 17 20

Lecture # 11_8.6 – Slide 48 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Hints for In-order

1. Draw a line along the tree
2. Walk through it counterclockwise
3. Visit a node the 2nd time you reach it

Lecture # 11_8.6 – Slide 49 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Solution (Inorder)

15

6 18

17 203 7

2 4 13

9

1

2

3

4

5

6

7

8

9

10

11

2 3 4 6 7 9 13 15 17 18 20

Lecture # 11_8.6 – Slide 50 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Hints for Post-order

1. Draw a line along the tree
2. Walk through it counterclockwise
3. Visit a node the last time you reach it

Lecture # 11_8.6 – Slide 51 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Solution (Postorder)

15

6 18

17 203 7

2 4 13

9

1
2

3

4

5

6

7

8
9

10

11

2 4 3 9 13 7 6 17 20 18 15

Lecture # 11_8.6 – Slide 52 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Outline

• Trees introduction
• Binary search trees
• Traversing algorithms
• Searching a BST
• Insert and Delete in a BST
• Tree balancing

Lecture # 11_8.6 – Slide 53 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Searching a BST

BSTs are particularly optimized for search operations:
– Search
– Minimum/Maximum
– Predecessor/Successor.

Their complexity is O(h), where h is the height of the
tree.

Lecture # 11_8.6 – Slide 54 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Tree-Search

Tree-Search(x, k)
1 if x = NULL or k = key[x]
2 then return x
3 if k < key[x]
4 then return Tree-Search(left[x], k)
5 else return Tree-Search(right[x], k)

Lecture # 11_8.6 – Slide 55 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Example

15

6 18

17 203 7

2 4 13

9
Tree-Search(13)

Lecture # 11_8.6 – Slide 56 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Tree-Search (iterative)

Tree-Search-iterative(x, k)
1 while x ¹ NULL and k ¹ key[x]
2 do if k < key[x]
3 then x ¬ left[x]
4 else x ¬ right[x]
5 return x

Lecture # 11_8.6 – Slide 57 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Example

15

6 18

17 203 7

2 4 13

9
Tree-Search-iterative(13)

Lecture # 11_8.6 – Slide 58 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Min and Max (iterative)

Tree-Minimum(x)
1 while left[x] ¹ NULL
2 do x ¬ left[x]
3 return x

Tree-Maximum(x)
1 while right[x] ¹ NULL
2 do x ¬ right[x]
3 return x

Lecture # 11_8.6 – Slide 59 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Successor

• Given a node x, find the next element. There are 2
possible situations

x

p[x] x

p[x]The minimum of the right
subtree

The first father for which x is in the
left subtree

Lecture # 11_8.6 – Slide 60 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Successor

Tree-Successor(x)
1 if right[x] ¹ NULL
2 then return Tree-Minimum(right[x])
3 y ¬ p[x]
4 while y ¹ NULL and x = right[y]
5 do x ¬ y
6 y ¬ p[y]
7 return y

Lecture # 11_8.6 – Slide 61 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Example

15

6 18

17 203 7

2 4 13

9
Tree-Successor(7)

Lecture # 11_8.6 – Slide 62 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Example

15

6 18

17 203 7

2 4 13

9
Tree-Successor(7)

Lecture # 11_8.6 – Slide 63 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Example

15

6 18

17 203 7

2 4 13

9
Tree-Successor(4)

Lecture # 11_8.6 – Slide 64 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Example

15

6 18

17 203 7

2 4 13

9
Tree-Successor(4)

Lecture # 11_8.6 – Slide 65 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Predecessor

Tree-Predecessor(x)
1 if left[x] ¹ NULL
2 then return Tree-Maximum(left[x])
3 y ¬ p[x]
4 while y ¹ NULL and x = left[y]
5 do x ¬ y
6 y ¬ p[y]
7 return y

Lecture # 11_8.6 – Slide 66 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Complexity

•The complexity for all search operations is O(h).

Lecture # 11_8.6 – Slide 67 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Outline

• Trees introduction
• Binary search trees
• Traversing algorithms
• Searching a BST
• Insert and Delete in a BST
• Tree balancing

Lecture # 11_8.6 – Slide 68 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Insert and Delete

• The issue with these operations is to maintain the
sorting criteria while adding or deleting nodes.

Lecture # 11_8.6 – Slide 69 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Insert

• Insert node z with key v:
– Create a new node z with

. left[z] = right[z] = NULL
– The correct insert location is fond by simulating

a search for key[z]
– Left and right pointers are then updated

accordingly
• The new node is always inserted as a leaf.

Lecture # 11_8.6 – Slide 70 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Tree-Insert (I)

Tree-Insert(T, z)
1 y ¬ NULL
2 x ¬ root[T]
3 while x ¹ NULL
4 do y ¬ x
5 if key[z]<key[x]
6 then x ¬ left[x]
7 else x ¬ right[x]

Search key[z]
in the tree

y

z

x=NULL

Lecture # 11_8.6 – Slide 71 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Tree-Insert (II)

8 p[z] ¬ y
9 if y = NULL
10 then root[T] ¬ z
11 else if key[z] < key[y]
12 then left[y] ¬ z
13 else right[y] ¬ z

y

z

x=NULL

Insert z as
child of y

Lecture # 11_8.6 – Slide 72 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Example

12

5 18

15 202 9

17

13
Tree-Insert(13) z

Lecture # 11_8.6 – Slide 73 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Example

12

5 18

15 202 9

17

Tree-Insert(13)

13

z

y

x

13

Lecture # 11_8.6 – Slide 74 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Example

12

5 18

15 202 9

17

Tree-Insert(13) z

y

13

Lecture # 11_8.6 – Slide 75 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Delete

Deletion is the most complex operation on a BST.
There are 3 situations, depending on the number of
children of the deleted node.

Lecture # 11_8.6 – Slide 76 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Possible cases: 0 children

1215

5 16

3 12 20

10 13

6

7

18 23

1215

5 16

3 12 20

10 18 23
z

6

7

If ‘z’ does not have
children, it can be
safely removed.

Lecture # 11_8.6 – Slide 77 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Possible cases: 1 child

1215

5 16

3 12 20

10 13 18 23

1215

5

3 12 20

10 18 23

z

6

7

6

7

If ‘z’ has a child, it
becomes the new

child of the father of
‘z’

13

Lecture # 11_8.6 – Slide 78 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Possible cases: 2 children

1215

5 16

3 12 20

10 13 18 23

1215

5 16

3 12 20

10 18 23

z z

6

7

6

7

13

If ‘z’ has 2 children, it is
necessary to replace ‘z’ with its

successor

Lecture # 11_8.6 – Slide 79 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Tree-Delete (I)

Tree-Delete(T, z)
1 if left[z]=NULL or right[z]=NULL
2 then y ¬ z
3 else y ¬ Tree-Successor(z)
4 if left[y] ¹ NULL
5 then x ¬ left[y]
6 else x ¬ right[y] y: node to delete

x: only child of y

Z

y

x

Lecture # 11_8.6 – Slide 80 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Tree-Delete (II)

7 if x ¹ NULL
8 then p[x] ¬ p[y]
9 if p[y] = NULL
10 then root[T] = x
11 else if y = left[p[y]]
12 then left[p[y]] ¬ x
13 else right[p[y]] ¬ x

If not, link x to the father
of y

Update x’s father

y is the root? Then x
becomes the root

Z
y

xp[y]
p[x]

Lecture # 11_8.6 – Slide 81 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Tree-Delete (III)

14 if y ¹ z
15 then key[z] ¬ key[y]
16 fields[z] ¬ fields[y]
17 return y

Possibly, copy the
information of the

successor of the node to be
deleted

Lecture # 11_8.6 – Slide 82 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Complexity

The complexity of any update operation on a tree
(insert or delete) is O(h).

Lecture # 11_8.6 – Slide 83 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Outline

• Trees introduction
• Binary search trees
• Traversing algorithms
• Searching a BST
• Insert and Delete in a BST
• Tree balancing

Lecture # 11_8.6 – Slide 84 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Tree balancing

• Complexity is O(h), where h is the tree height.
– A balanced tree has

. h = log2 n
– A totally unbalanced tree has

. h = n
– Therefore the operations on a BST have a

variable complexity between O(log2 n) and O(n)

Lecture # 11_8.6 – Slide 85 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

• We want to build a BST storing all numbers
between 0 and 9.
– In which sequence do we have to insert the

nodes in order to have a balanced tree?
– In which sequence do we have to insert the

nodes in order to have a totally unbalanced tree?

Exercise

Lecture # 11_8.6 – Slide 86 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Solution (I)

6

3 8

1 5 7 9

0 2 4
Insert() order: 6, 3, 1, 0, 2, 5,

4, 8, 7, 9

Lecture # 11_8.6 – Slide 87 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Solution (II)

9

Insert() order: 9, 8, 7, 6, 5, 4,
3, 2, 1, 0

8
7

6
5

4
3

2
1

0

Lecture # 11_8.6 – Slide 88 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Solution (II)

9

Insert() order: 9, 8, 7, 6, 5, 4,
3, 2, 1, 0

8
7

6
5

4
3

2
1

0
Does it look like a

balanced one?

Lecture # 11_8.6 – Slide 89 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Solution (II)

9

Insert() order: 9, 8, 7, 6, 5, 4,
3, 2, 1, 0

8
7

6
5

4
3

2
1

0

BST are not balanced by definition. In
order to have a balanced tree you

must implement balancing techniques

Self-balancing BST

Lecture # 11_8.6 – Slide 90 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

References

• A.V. Aho, J.E. Hopcroft, J.D. Ullman:
“Data Structures and Algorithms,”
Addison Wesley, Reading MA (USA), 1983
pp. 75-106

• G.H. Gonnet:
“Handbook of Algorithms and Data Structures,”
Addison Wesley, Reading MA (USA), 1984, pp. 69-
117

• J. Esakow. T. Weiss
“Data structure: an advanced approach using C,”
Prentice Hall, Englewood Cliffs NJ (USA), 1982, pp.
38-59

1

Lecture # 11_8.6 – Slide 91 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

References

• E. Horowitz, S. Sahni:
“Fundamentals of Computer Algorithms,”
Pittman, London (UK), 1978
pp. 203-271

• R. Sedgewick:
“Algorithms in C,”
Addison Wesley, Reading MA (USA), 1990
pp. 35-50

• C.J. Van Wyk:
“Data Structures and C Programs,” Addison
Wesley, Reading MA (USA), 1988
pp 159-176

2

Lecture # 11_8.6 – Slide 92 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

References

• M.A. Weiss:
“Data Structures and Algorithm Analysis,”
The Benjamin/Cummings Publishing Company,
Redwood City, CA (USA), 1992, pp. 87-98

• R.J. Wilson:
“Introduzione alla teoria dei grafi,”
Cremonese, Roma 1978, pp. 57-76

• N. Wirth:
“Algorithms + Data Structures = Programs,”
Prentice Hall, Englewood Cliffs NJ (USA), 1976
pp. 169-263

3

Lecture # 11_8.6 – Slide 93 Rel. 10/06/2019 © Savino, Sanchez – 2017- 2019

Малые Автюхи, Калинковичский район, Республики Беларусь

