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Disclaimer

 We disclaim any warranties or representations as
to the accuracy or completeness of this material.

« Materials are provided “as is” without warranty of
any kind, either express or implied, including
without limitation, warranties of merchantability,
fitness for a particular purpose, and non-
infringement.

* Under no circumstances shall we be liable for any
loss, damage, liability or expense incurred or
suffered which is claimed to have resulted from
use of this material.
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Goal

— This lecture aims at presenting graphs visiting
techniques.
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Prerequisites

* Lectures:
— 11_7.x Pointers & Dynamic Memory
— 11_8.4 Graphs: Introduction & definitions
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Further readings

« Students interested in a deeper look at the covered
topics can refer, for instance, to the books listed at
the end of the lecture.
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Outline

— Introduction
— Breadth-First Search
— Depth-First Search

Lecture 11_8.5 — Slide 7 Rel. 13/05/2017 © Savino, Sanchez - 2017



Outline

C— Introduction )

— Breadth-First Search
— Depth-First Search
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Graph Searching

(or Visiting or Traversing)

« Given: a graph G = (V, E), directed or undirected

« Goal: explore every vertex and every edge from a
source vertex.

* Result: build a tree on the graph
— Pick a vertex as the root
— Choose certain edges to produce a tree

— Note: might also build a forest if graph is not
connected
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Approaches

 Two possible visits:
— Breadth first visit
— Depth first visit.
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Outline

— Introduction
(— Breadth-First Search )
— Depth-First Search
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Breadth-First Search

« “Explore” a graph, turning it into a tree
— One vertex at a time

— Expand frontier of explored vertices across the
breadth of the frontier

* Builds a tree over the graph
— Pick a source vertex to be the root

— Find (“discover”) its children, then their children,
etc.
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Breadth-First Search

 We will associate vertex “colors” to guide the
algorithm

— White nodes have not been discovered
. All vertices start out white

— Grey nodes are discovered but not fully explored
. They may be adjacent to white vertices

— Black nodes are discovered and fully explored

. They are adjacent only to black and gray
vertices

 Explore nodes by scanning adjacency list of grey
nodes
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Pseudo-code

BFS(G, s)
1 for ogni vertice u € V[G] - {s}

2 do color[u] <« WHITE

3 d[u] « o

4 m{u] « NIL

S color[s] < GRAY

6 ds]<0

7 ns] « NIL

8 Q& {s}

9 whileQ#0
10 do u « head[Q]
11 for ogni v € Adj[u]
12 do if color{v] = WHITE
13 then color{v] < GrRAY
14 dlv] « d[u] + 1
15 n{v] « u
16 Sty (b ENQUEUE(Q, V)
17 DEQUEUE(Q)
18 color[u] ¢« BLACK
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Pseudo-code

BFS(G, s)
1 for ogni vertice u € V[G] - {s}

2 do color[u] <« WHITE
3 d[u] € oo
4 m{u] « NIL
S color[s] < GRAY
6 dls] &8 ( Level ]
7 7ls] e [ Parent ]
8 Q& {s}
9 whileQ#09
10 do u « head[Q]
11 for ogni v € Adj[u]
12 do if color{v] = WHITE
13 then color{v] < GrRAY
14 dlv] «d[u] + 1
15 n{v] « u
16 Sats b ENQUEUE(Q, V)
17 DEQUEUE(Q)
18 color[u] ¢« BLACK
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FIFO

* Breadth-first visit is usually implemented using a
FIFO:

— Each time a vertex is visited is placed in the FIFO

— At each step we get a vertex from the FIFO and
its adjacent nodes are visited.
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BFS tree

 The BFS produces a BFS tree, where
— The root is the source node
— The vertices are the same ones of the graph
— The edges are a subset of the graph edges
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Breadth-First Search

BFS (G, s) {
initialize vertices;
Q = {s}; // Q is a queue; initialize to s
while (Q not empty) {

u RemoveTop (Q) ;
for each v € u->adj {
if (v->color == WHITE)
v->color = GREY;
v->d = u->d + 1;
v->p = u;
Enqueue (Q, V),

}
u->color = BLACK;

}
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Note

« Vertices coloring follows this criteria :
— All vertices are initially white

— A vertex becomes gray when is visited for the
first time

— A vertex becomes black when all its adjacent
vertices which are not yet visited have been
placed in the FIFO.
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Example
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Example . Initialization
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« Extract s from Q

Example  Enque and gray color all

adjacent vertices of s
« Color s in black

Koo
%
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« Gets wfrom Q

Example  Enque and gray color all
adjacent vertices of w

« Color w in black

Q| r| t] X
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Example: Resulting Tree
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BFS: The Code Again

BFS (G, s) {

initialize vertices; —

Q = {s};
while (Q not empty) ({

Touch every vertex: O(V)

u = RemoveTop (Q); <+— |Uu=every vertex, butonly once

for each v € u->adj {

’,,—””’»’if (v->color == WHITE)

list

Sov= every vertex v->color = GREY;
that appears insome | v->d = u->d + 1;
other vert’s adjacency | y_>p = y;

Enqueue (Q, Vv);
}
u->color = BLACK;

}
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Minimum Distance

* Given two vertices s and v on an undirected graph,
the minimum number of edges on a path from s to v
Is the distance on the minimum path.

— The BFS computes this distance for each vertex
of the graph from the source vertex.
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BFS: Properties

 BFS calculates the shortest-path distance to the
source node

— Shortest-path distance 4(s,v) = minimum number
of edges from s to v, or « if v not reachable from
S
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BFS: Properties

 BFS builds breadth-first tree, in which paths to root
represent shortest paths in G

— Thus can use BFS to calculate shortest path
from one vertex to another in O(V+E) time
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Complexity

‘BFS complexity is O(V+E).

« Q:
What will be the storage cost in addition to
storing the tree?
 A:
Total space used:
O(max(degree(v))) = O(E)
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Outline

— Introduction
— Breadth-First Search
(— Depth-First Search >
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Depth First Visit

The Depth-First Search (DFS) follows a different
approach.

« At each step the algorithm visits a vertex adjacent
to the last visited.

 When this is not possible, the algorithm goes back
to the last visited node with adjacent vertex that
still have to be visited.

DFS is usually a recursive function.

 Two parameters (time stamps) indicate the time
when the node was visited:

— d[u] first time visit
— f[u] last time visit
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Pseudo-code (1)

DFS(G)

1 for each vertex u € V[G]

2 do color[u] < WHITE

3 7 [u] < NIL

4 time <0

5 for each vertex u € V[G]

6 do if color[u] = WHITE
7 then DFS-VISIT(u)
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Pseudo-code (2)

DFS-VISIT(u)

color[u] < GRAY The white vertex u is visited
time < time +1
dlu] < time
for each v € Adj[u] The edge (u,v) is traversed
do if color[v] = WHITE
then 7 [v] < u
DFS-VISIT(v)

color{u] < BLACK U becomes black
flu] < time < time +1

O 0O\ b W=
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Note

* The coloring of the vertices follows this criteria:
— All vertices are white before beginning the visit.

— A vertex becomes gray when is visited for the
first time

— A vertex becomes black when all its adjacent
vertices have been visited.
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Example source: s

.
—C




Example

Visit s

.
.




Example

Visit w

.
.




Example Visit t




Example Visit u

I S

t u
(e
\Y; X

2 @




Visit x




Example

Visit y

° GC




Example

Visit z




Visitr

Example




Example Visit v




Example

Concludes the visit




Example

Resulting Tree

S

W
t

X

Z 6




Complexity

 The complexity of the DFS visit is ©(V+E).
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DFS Forest

« The DFS builds a DFS forest, composed of one or
more DFS trees.

 The edges of the forest are called tree edges.
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Edge classification

* In a directed graph, edges can fall in one of 4
categories:

— Tree edges (1)

— Backward edges (B): they are not T edges, and
they connect a vertex with one of its parents

— Forward edges (F): they are not T or B edges and
they connect a vertex with one of its children

— Cross edges (C): the remaining edges.
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Edge classification

 DFS can be easily modified to classify edges.

« Every time the algorithm traverses an edge (u,v) it
checks the color of the v vertex:

— If it is white, the edge is a T edge
— If it is grey, the edge is a B edge

— If it is black, the edge is an F edge (if d[u]<d[v])
or a C edge (if d[u]>d[v]), where d is the
discovery time stamp.
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Visiting time stamps

 Each vertex has two time stamps:

— The first time stamp (or discovery time stamp)
records when a vertex is first discovered

— The second time stamp records when the search
finishes examining adjacency list of vertex.
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Exampld source: s
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Examplq DFS and intervals

computation
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Exampld Edges Classification
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Exampl €| Edges classification

LECWUIE TT1_O0.0 — OllUE 01 REI. TO/UOI/ZUTT & oaviliu, odiTulitT©Z = ZUTT




Edges classification — undirected graphs

* In a not directed graph there are no forward or
traversing edges.
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Cycles

* A directed graph DOES NOT HAVE CYCLES iff a
DFS does not produce backward edges.
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Example
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EXx:

DFS and time stamps
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EXx:

Edges classification
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EXx:

If there are B edges, the graph has
cycles
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Finding the cut vertices

« A DFS is used to classify each edge.

« Avertex v is acut vertex IFF v has a child s so that
there are no B edges from s or from any of its
descendants to a predecessor of v.
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Example

Source s
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EXx:

DFS and time stamps
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EXx:

Edges classification
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EXx:

Search tree
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EXx:

Cut vertices identification
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Note

 The source vertex is a cut vertex IFF at least one of
its children does not belong to any of the subtrees
starting from its other adjacent nodes.
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BFS and DFS exercise

* Perform BFS starting from A:
?2??

* Perform DFS starting from A:
?2??
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BFS and DFS solution

* Perform BFS starting from A:
A-B-F-C-G-E-I-H

* Perform DFS starting from A:
A-B-C-H-G-I-E-FI/ID
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