Graph Traversals

Alessandro SAVINO
Politecnico di Torino (ltaly)

alessandro.savino@polito.it

www.testqgroup.polito.it

License Information

This work is licensed under the
Creative Commons BY-NC
License

To view a copy of the license, visit:
http://creativecommons.org/licenses/by-nc/3.0/legalcode

Lecture 11_8.5 — Slide 2 Rel. 13/05/2017 © Savino, Sanchez - 2017

Disclaimer

 We disclaim any warranties or representations as
to the accuracy or completeness of this material.

« Materials are provided “as is” without warranty of
any kind, either express or implied, including
without limitation, warranties of merchantability,
fitness for a particular purpose, and non-
infringement.

* Under no circumstances shall we be liable for any
loss, damage, liability or expense incurred or
suffered which is claimed to have resulted from
use of this material.

Lecture 11_8.5 — Slide 3 Rel. 13/05/2017 © Savino, Sanchez - 2017

Goal

— This lecture aims at presenting graphs visiting
techniques.

Lecture 11_8.5 — Slide 4 Rel. 13/05/2017 © Savino, Sanchez - 2017

Prerequisites

* Lectures:
— 11_7.x Pointers & Dynamic Memory
— 11_8.4 Graphs: Introduction & definitions

Lecture 11_8.5 — Slide 5 Rel. 13/05/2017 © Savino, Sanchez - 2017

Further readings

« Students interested in a deeper look at the covered
topics can refer, for instance, to the books listed at
the end of the lecture.

Lecture 11_8.5 — Slide 6 Rel. 13/05/2017 © Savino, Sanchez - 2017

Outline

— Introduction
— Breadth-First Search
— Depth-First Search

Lecture 11_8.5 — Slide 7 Rel. 13/05/2017 © Savino, Sanchez - 2017

Outline

C— Introduction)

— Breadth-First Search
— Depth-First Search

Lecture 11_8.5 — Slide 8 Rel. 13/05/2017 © Savino, Sanchez - 2017

Graph Searching

(or Visiting or Traversing)

« Given: a graph G = (V, E), directed or undirected

« Goal: explore every vertex and every edge from a
source vertex.

* Result: build a tree on the graph
— Pick a vertex as the root
— Choose certain edges to produce a tree

— Note: might also build a forest if graph is not
connected

Lecture 11_8.5 — Slide 9 Rel. 13/05/2017 © Savino, Sanchez - 2017

Approaches

 Two possible visits:
— Breadth first visit
— Depth first visit.

Lecture 11_8.5 — Slide 10 Rel. 13/05/2017 © Savino, Sanchez - 2017

Outline

— Introduction
(— Breadth-First Search)
— Depth-First Search

Lecture 11_8.5 — Slide 11 Rel. 13/05/2017 © Savino, Sanchez - 2017

Breadth-First Search

« “Explore” a graph, turning it into a tree
— One vertex at a time

— Expand frontier of explored vertices across the
breadth of the frontier

* Builds a tree over the graph
— Pick a source vertex to be the root

— Find (“discover”) its children, then their children,
etc.

Lecture 11_8.5 — Slide 12 Rel. 13/05/2017 © Savino, Sanchez - 2017

Breadth-First Search

 We will associate vertex “colors” to guide the
algorithm

— White nodes have not been discovered
. All vertices start out white

— Grey nodes are discovered but not fully explored
. They may be adjacent to white vertices

— Black nodes are discovered and fully explored

. They are adjacent only to black and gray
vertices

 Explore nodes by scanning adjacency list of grey
nodes

Lecture 11_8.5 — Slide 13 Rel. 13/05/2017 © Savino, Sanchez - 2017

Pseudo-code

BFS(G, s)
1 for ogni vertice u € V[G] - {s}

2 do color[u] <« WHITE

3 d[u] « o

4 m{u] « NIL

S color[s] < GRAY

6 ds]<0

7 ns] « NIL

8 Q& {s}

9 whileQ#0
10 do u « head[Q]
11 for ogni v € Adj[u]
12 do if color{v] = WHITE
13 then color{v] < GrRAY
14 dlv] « d[u] + 1
15 n{v] « u
16 Sty (b ENQUEUE(Q, V)
17 DEQUEUE(Q)
18 color[u] ¢« BLACK

Lecture 11_8.5 — Slide 14 Rel. 13/05/2017 © Savino, Sanchez - 2017

Pseudo-code

BFS(G, s)
1 for ogni vertice u € V[G] - {s}

2 do color[u] <« WHITE
3 d[u] € oo
4 m{u] « NIL
S color[s] < GRAY
6 dls] &8 (Level]
7 7ls] e [Parent]
8 Q& {s}
9 whileQ#09
10 do u « head[Q]
11 for ogni v € Adj[u]
12 do if color{v] = WHITE
13 then color{v] < GrRAY
14 dlv] «d[u] + 1
15 n{v] « u
16 Sats b ENQUEUE(Q, V)
17 DEQUEUE(Q)
18 color[u] ¢« BLACK

Lecture 11_8.5 — Slide 15 Rel. 13/05/2017 © Savino, Sanchez - 2017

FIFO

* Breadth-first visit is usually implemented using a
FIFO:

— Each time a vertex is visited is placed in the FIFO

— At each step we get a vertex from the FIFO and
its adjacent nodes are visited.

Lecture 11_8.5 — Slide 16 Rel. 13/05/2017 © Savino, Sanchez - 2017

BFS tree

 The BFS produces a BFS tree, where
— The root is the source node
— The vertices are the same ones of the graph
— The edges are a subset of the graph edges

Lecture 11_8.5 — Slide 17 Rel. 13/05/2017 © Savino, Sanchez - 2017

Breadth-First Search

BFS (G, s) {
initialize vertices;
Q = {s}; // Q is a queue; initialize to s
while (Q not empty) {

u RemoveTop (Q) ;
for each v € u->adj {
if (v->color == WHITE)
v->color = GREY;
v->d = u->d + 1;
v->p = u;
Enqueue (Q, V),

}
u->color = BLACK;

}

Lecture 11_8.5 — Slide 18 Rel. 13/05/2017 © Savino, Sanchez - 2017

Note

« Vertices coloring follows this criteria :
— All vertices are initially white

— A vertex becomes gray when is visited for the
first time

— A vertex becomes black when all its adjacent
vertices which are not yet visited have been
placed in the FIFO.

Lecture 11_8.5 — Slide 19 Rel. 13/05/2017 © Savino, Sanchez - 2017

Example

* Ssource. s

.
@

OnG;

Lecture 11_8.5 — Slide 20

Rel. 13/05/2017

© Savino, Sanchez - 2017

Example . Initialization

Lecture 11_8.5 — Slide 21 Rel. 13/05/2017 © Savino, Sanchez - 2017

« Extract s from Q

Example Enque and gray color all

adjacent vertices of s
« Color s in black

Koo
%

Lecture 11_8.5 — Slide 22 Rel. 13/05/2017 © Savino, Sanchez - 2017

« Gets wfrom Q

Example Enque and gray color all
adjacent vertices of w

« Color w in black

Q| r| t] X

Lecture 11_8.5 — Slide 23 Rel. 13/05/2017 © Savino, Sanchez - 2017

Example

Q

Q

—t

X \'

"

)0

OO,

Lecture 11_8.5 — Slide 24

Rel. 13/05/2017

© Savino, Sanchez - 2017

Example

Q

Q

X1V u

,)

.

Lecture 11_8.5 — Slide 25

Rel. 13/05/2017

© Savino, Sanchez - 2017

Example

r S t u
\Y; X

Qv |uly

Lecture 11_8.5 — Slide 26 Rel. 13/05/2017 © Savino, Sanchez - 2017

Example

Q

Q

-

Y

Lecture 11_8.5 — Slide 27

Rel. 13/05/2017

© Savino, Sanchez - 2017

Example

I S
Q

Q

Lecture 11_8.5 — Slide 28

Rel. 13/05/2017

© Savino, Sanchez - 2017

Example

I S
Q

Q

Lecture 11_8.5 — Slide 29

Rel. 13/05/2017

© Savino, Sanchez - 2017

Example: Resulting Tree

Lecture 11_8.5 — Slide 30 Rel. 13/05/2017 © Savino, Sanchez - 2017

BFS: The Code Again

BFS (G, s) {

initialize vertices; —

Q = {s};
while (Q not empty) ({

Touch every vertex: O(V)

u = RemoveTop (Q); <+— |Uu=every vertex, butonly once

for each v € u->adj {

’,,—””’»’if (v->color == WHITE)

list

Sov= every vertex v->color = GREY;
that appears insome | v->d = u->d + 1;
other vert’s adjacency | y_>p = y;

Enqueue (Q, Vv);
}
u->color = BLACK;

}

Lecture 11_8.5 — Slide 31 Rel. 13/05/2017

© Savino, Sanchez - 2017

Minimum Distance

* Given two vertices s and v on an undirected graph,
the minimum number of edges on a path from s to v
Is the distance on the minimum path.

— The BFS computes this distance for each vertex
of the graph from the source vertex.

Lecture 11_8.5 — Slide 32 Rel. 13/05/2017 © Savino, Sanchez - 2017

BFS: Properties

 BFS calculates the shortest-path distance to the
source node

— Shortest-path distance 4(s,v) = minimum number
of edges from s to v, or « if v not reachable from
S

Lecture 11_8.5 — Slide 33 Rel. 13/05/2017 © Savino, Sanchez - 2017

BFS: Properties

 BFS builds breadth-first tree, in which paths to root
represent shortest paths in G

— Thus can use BFS to calculate shortest path
from one vertex to another in O(V+E) time

Lecture 11_8.5 — Slide 34 Rel. 13/05/2017 © Savino, Sanchez - 2017

Complexity

‘BFS complexity is O(V+E).

« Q:
What will be the storage cost in addition to
storing the tree?
 A:
Total space used:
O(max(degree(v))) = O(E)

Lecture 11_8.5 — Slide 35 Rel. 13/05/2017 © Savino, Sanchez - 2017

Outline

— Introduction
— Breadth-First Search
(— Depth-First Search >

Lecture 11_8.5 — Slide 36 Rel. 13/05/2017 © Savino, Sanchez - 2017

Depth First Visit

The Depth-First Search (DFS) follows a different
approach.

« At each step the algorithm visits a vertex adjacent
to the last visited.

 When this is not possible, the algorithm goes back
to the last visited node with adjacent vertex that
still have to be visited.

DFS is usually a recursive function.

 Two parameters (time stamps) indicate the time
when the node was visited:

— d[u] first time visit
— f[u] last time visit

Lecture 11_8.5 — Slide 37 Rel. 13/05/2017 © Savino, Sanchez - 2017

Pseudo-code (1)

DFS(G)

1 for each vertex u € V[G]

2 do color[u] < WHITE

3 7 [u] < NIL

4 time <0

5 for each vertex u € V[G]

6 do if color[u] = WHITE
7 then DFS-VISIT(u)

Lecture 11_8.5 — Slide 38 Rel. 13/05/2017 © Savino, Sanchez - 2017

Pseudo-code (2)

DFS-VISIT(u)

color[u] < GRAY The white vertex u is visited
time < time +1
dlu] < time
for each v € Adj[u] The edge (u,v) is traversed
do if color[v] = WHITE
then 7 [v] < u
DFS-VISIT(v)

color{u] < BLACK U becomes black
flu] < time < time +1

O 0O\ b W=

Lecture 11_8.5 — Slide 39 Rel. 13/05/2017 © Savino, Sanchez - 2017

Note

* The coloring of the vertices follows this criteria:
— All vertices are white before beginning the visit.

— A vertex becomes gray when is visited for the
first time

— A vertex becomes black when all its adjacent
vertices have been visited.

Lecture 11_8.5 — Slide 40 Rel. 13/05/2017 © Savino, Sanchez - 2017

Example source: s

.
—C

Example

Visit s

.
.

Example

Visit w

.
.

Example Visit t

Example Visit u

I S

t u
(e
\Y; X

2 @

Visit x

Example

Visit y

° GC

Example

Visit z

Visitr

Example

Example Visit v

Example

Concludes the visit

Example

Resulting Tree

S

W
t

X

Z 6

Complexity

 The complexity of the DFS visit is ©(V+E).

Lecture 11_8.5 — Slide 53 Rel. 13/05/2017 © Savino, Sanchez - 2017

DFS Forest

« The DFS builds a DFS forest, composed of one or
more DFS trees.

 The edges of the forest are called tree edges.

Lecture 11_8.5 — Slide 54 Rel. 13/05/2017 © Savino, Sanchez - 2017

Edge classification

* In a directed graph, edges can fall in one of 4
categories:

— Tree edges (1)

— Backward edges (B): they are not T edges, and
they connect a vertex with one of its parents

— Forward edges (F): they are not T or B edges and
they connect a vertex with one of its children

— Cross edges (C): the remaining edges.

Lecture 11_8.5 — Slide 55 Rel. 13/05/2017 © Savino, Sanchez - 2017

Edge classification

 DFS can be easily modified to classify edges.

« Every time the algorithm traverses an edge (u,v) it
checks the color of the v vertex:

— If it is white, the edge is a T edge
— If it is grey, the edge is a B edge

— If it is black, the edge is an F edge (if d[u]<d[v])
or a C edge (if d[u]>d[v]), where d is the
discovery time stamp.

Lecture 11_8.5 — Slide 56 Rel. 13/05/2017 © Savino, Sanchez - 2017

Visiting time stamps

 Each vertex has two time stamps:

— The first time stamp (or discovery time stamp)
records when a vertex is first discovered

— The second time stamp records when the search
finishes examining adjacency list of vertex.

Lecture 11_8.5 — Slide 57 Rel. 13/05/2017 © Savino, Sanchez - 2017

Exampld source: s

Lecture 11_8.5 — Slide 58 Rel. 13/05/2017 © Savino, Sanchez - 2017

Examplq DFS and intervals

computation

Lecture 11_8.5 — Slide 59 Rel. 13/05/2017 © Savino, Sanchez - 2017

Exampld Edges Classification

Lecture 11_8.5 — Slide 60 Rel. 13/05/2017 © Savino, Sanchez - 2017

Exampl €| Edges classification

LECWUIE TT1_O0.0 — OllUE 01 REI. TO/UOI/ZUTT & oaviliu, odiTulitT©Z = ZUTT

Edges classification — undirected graphs

* In a not directed graph there are no forward or
traversing edges.

Lecture 11_8.5 — Slide 62 Rel. 13/05/2017 © Savino, Sanchez - 2017

Cycles

* A directed graph DOES NOT HAVE CYCLES iff a
DFS does not produce backward edges.

Lecture 11_8.5 — Slide 63 Rel. 13/05/2017 © Savino, Sanchez - 2017

Example

Lecture 11_8.5 — Slide 64 Rel. 13/05/2017 © Savino, Sanchez - 2017

EXx:

DFS and time stamps

2/17 1/18 5/14 6/13

() e

3/16 @

Lecture 11_8.5 — Slide 65 Rel. 13/05/2017 © Savino, Sanchez - 2017

EXx:

Edges classification

Lecture 11_8.5 — Slide 66 Rel. 13/05/2017 © Savino, Sanchez - 2017

EXx:

If there are B edges, the graph has
cycles

Lecture 11_8.5 — Slide 67 Rel. 13/05/2017 © Savino, Sanchez - 2017

Finding the cut vertices

« A DFS is used to classify each edge.

« Avertex v is acut vertex IFF v has a child s so that
there are no B edges from s or from any of its
descendants to a predecessor of v.

Lecture 11_8.5 — Slide 68 Rel. 13/05/2017 © Savino, Sanchez - 2017

Example

Source s

Lecture 11_8.5 — Slide 69 Rel. 13/05/2017 © Savino, Sanchez - 2017

EXx:

DFS and time stamps

2/17 1/18 5/14 6/13

() e

3/16 @

Lecture 11_8.5 — Slide 70 Rel. 13/05/2017 © Savino, Sanchez - 2017

EXx:

Edges classification

Lecture 11_8.5 — Slide 71 Rel. 13/05/2017 © Savino, Sanchez - 2017

EXx:

Search tree

Lecture 11_8.5 — Slide 72 Rel. 13/05/2017 © Savino, Sanchez - 2017

EXx:

Cut vertices identification

Lecture 11_8.5 — Slide 73 Rel. 13/05/2017 © Savino, Sanchez - 2017

Note

 The source vertex is a cut vertex IFF at least one of
its children does not belong to any of the subtrees
starting from its other adjacent nodes.

Lecture 11_8.5 — Slide 74 Rel. 13/05/2017 © Savino, Sanchez - 2017

BFS and DFS exercise

* Perform BFS starting from A:
?2??

* Perform DFS starting from A:
?2??

Lecture 11_8.5 — Slide 75 Rel. 13/05/2017 © Savino, Sanchez - 2017

BFS and DFS solution

* Perform BFS starting from A:
A-B-F-C-G-E-I-H

* Perform DFS starting from A:
A-B-C-H-G-I-E-FI/ID

Lecture 11_8.5 — Slide 76 Rel. 13/05/2017 © Savino, Sanchez - 2017

1
References

« A.V. Aho, J.E. Hopcroft, J.D. Ullman:
“Data Structures and Algorithms,”
Addison Wesley, Reading MA (USA), 1983
pp. 198-252

 G. Ausiello, A. Marchetti-Spaccamela, M. Protasi:
“Teoria e Progetto di Algoritmi Fondamentali,”
Ed. Franco Angeli, Milano, 1985, pp. 265-364
 E. Horowitz, S. Sahni:
“Fundamentals of Computer Algorithms,”
Pittman, London (UK), 1978, pp. 272-325

Lecture 11_8.5 — Slide 77 Rel. 13/05/2017 © Savino, Sanchez - 2017

References @

« C.L. Liu:
“Introduction to Combinatorial Mathematics,”
McGraw-Hill Book Company, New York (USA),
pp. 167-297

 R. Sedgewick:
“Algorithms in C,”
Addison Wesley, Reading MA (USA), 1990
pp. 415-508

« C.J.Van Wyk:
“Data Structures and C Programs,” Addison
Wesley, Reading MA (USA), 1988
pp. 313-341

Lecture 11_8.5 — Slide 78 Rel. 13/05/2017 © Savino, Sanchez - 2017

References

 R.J. Wilson:
“Introduzione alla teoria dei grafi,”
Cremonese, Roma 1978, pp. 1-155

Lecture 11_8.5 — Slide 79 Rel. 13/05/2017

© Savino, Sanchez - 2017

Mansle AsTioxn, KannHkoBu4iCckuin panoH, Pecnybnukn benapychb

