
Lecture
11_8.5 Graph Traversals

Alessandro SAVINO
Politecnico di Torino (Italy)
alessandro.savino@polito.it

www.testgroup.polito.it

Lecture 11_8.5 – Slide 2 Rel. 13/05/2017 © Savino, Sanchez - 2017

License Information

This work is licensed under the
Creative Commons BY-NC

License

To view a copy of the license, visit:
http://creativecommons.org/licenses/by-nc/3.0/legalcode

Lecture 11_8.5 – Slide 3 Rel. 13/05/2017 © Savino, Sanchez - 2017

Disclaimer

• We disclaim any warranties or representations as
to the accuracy or completeness of this material.

• Materials are provided “as is” without warranty of
any kind, either express or implied, including
without limitation, warranties of merchantability,
fitness for a particular purpose, and non-
infringement.

• Under no circumstances shall we be liable for any
loss, damage, liability or expense incurred or
suffered which is claimed to have resulted from
use of this material.

Lecture 11_8.5 – Slide 4 Rel. 13/05/2017 © Savino, Sanchez - 2017

Goal

– This lecture aims at presenting graphs visiting
techniques.

Lecture 11_8.5 – Slide 5 Rel. 13/05/2017 © Savino, Sanchez - 2017

Prerequisites

• Lectures:
– 11_7.x Pointers & Dynamic Memory
– 11_8.4 Graphs: Introduction & definitions

Lecture 11_8.5 – Slide 6 Rel. 13/05/2017 © Savino, Sanchez - 2017

Further readings

• Students interested in a deeper look at the covered
topics can refer, for instance, to the books listed at
the end of the lecture.

Lecture 11_8.5 – Slide 7 Rel. 13/05/2017 © Savino, Sanchez - 2017

Outline

– Introduction
– Breadth-First Search
– Depth-First Search

Lecture 11_8.5 – Slide 8 Rel. 13/05/2017 © Savino, Sanchez - 2017

Outline

– Introduction
– Breadth-First Search
– Depth-First Search

Lecture 11_8.5 – Slide 9 Rel. 13/05/2017 © Savino, Sanchez - 2017

Graph Searching
(or Visiting or Traversing)

• Given: a graph G = (V, E), directed or undirected
• Goal: explore every vertex and every edge from a

source vertex.
• Result: build a tree on the graph

– Pick a vertex as the root
– Choose certain edges to produce a tree
– Note: might also build a forest if graph is not

connected

Lecture 11_8.5 – Slide 10 Rel. 13/05/2017 © Savino, Sanchez - 2017

Approaches

• Two possible visits:
– Breadth first visit
– Depth first visit.

Lecture 11_8.5 – Slide 11 Rel. 13/05/2017 © Savino, Sanchez - 2017

Outline

– Introduction
– Breadth-First Search
– Depth-First Search

Lecture 11_8.5 – Slide 12 Rel. 13/05/2017 © Savino, Sanchez - 2017

Breadth-First Search

• “Explore” a graph, turning it into a tree
– One vertex at a time
– Expand frontier of explored vertices across the

breadth of the frontier
• Builds a tree over the graph

– Pick a source vertex to be the root
– Find (“discover”) its children, then their children,

etc.

Lecture 11_8.5 – Slide 13 Rel. 13/05/2017 © Savino, Sanchez - 2017

Breadth-First Search

• We will associate vertex “colors” to guide the
algorithm
– White nodes have not been discovered

. All vertices start out white
– Grey nodes are discovered but not fully explored

. They may be adjacent to white vertices
– Black nodes are discovered and fully explored

. They are adjacent only to black and gray
vertices

• Explore nodes by scanning adjacency list of grey
nodes

Lecture 11_8.5 – Slide 14 Rel. 13/05/2017 © Savino, Sanchez - 2017

Pseudo-code

Lecture 11_8.5 – Slide 15 Rel. 13/05/2017 © Savino, Sanchez - 2017

Pseudo-code

Level
Parent

Lecture 11_8.5 – Slide 16 Rel. 13/05/2017 © Savino, Sanchez - 2017

FIFO

• Breadth-first visit is usually implemented using a
FIFO:
– Each time a vertex is visited is placed in the FIFO
– At each step we get a vertex from the FIFO and

its adjacent nodes are visited.

Lecture 11_8.5 – Slide 17 Rel. 13/05/2017 © Savino, Sanchez - 2017

BFS tree

• The BFS produces a BFS tree, where
– The root is the source node
– The vertices are the same ones of the graph
– The edges are a subset of the graph edges

Lecture 11_8.5 – Slide 18 Rel. 13/05/2017 © Savino, Sanchez - 2017

Breadth-First Search

BFS(G, s) {
initialize vertices;
Q = {s}; // Q is a queue; initialize to s
while (Q not empty) {

u = RemoveTop(Q);
for each v Î u->adj {

if (v->color == WHITE)
v->color = GREY;
v->d = u->d + 1;
v->p = u;
Enqueue(Q, v);

}
u->color = BLACK;

}
}

Lecture 11_8.5 – Slide 19 Rel. 13/05/2017 © Savino, Sanchez - 2017

Note

• Vertices coloring follows this criteria :
– All vertices are initially white
– A vertex becomes gray when is visited for the

first time
– A vertex becomes black when all its adjacent

vertices which are not yet visited have been
placed in the FIFO.

Lecture 11_8.5 – Slide 20 Rel. 13/05/2017 © Savino, Sanchez - 2017

Example • source: s

r s t ur s t u

v w x y

Lecture 11_8.5 – Slide 21 Rel. 13/05/2017 © Savino, Sanchez - 2017

Example • Initialization

r s t u

¥

¥

¥ ¥

0 ¥

¥

¥

r s t u

v w x y

sQ

Lecture 11_8.5 – Slide 22 Rel. 13/05/2017 © Savino, Sanchez - 2017

Example
• Extract s from Q
• Enque and gray color all

adjacent vertices of s
• Color s in black

r s t u

¥

1

1 ¥

0 ¥

¥

¥

r s t u

v w x y

wQ r

Lecture 11_8.5 – Slide 23 Rel. 13/05/2017 © Savino, Sanchez - 2017

Example
• Gets w from Q
• Enque and gray color all

adjacent vertices of w
• Color w in black

¥

1

1 2

0 2

¥

¥

r s t u

v w x y

rQ t x

Lecture 11_8.5 – Slide 24 Rel. 13/05/2017 © Savino, Sanchez - 2017

Example

2

1

1 2

0 2

¥

¥

r s t u

v w x y

tQ x v

Lecture 11_8.5 – Slide 25 Rel. 13/05/2017 © Savino, Sanchez - 2017

Example

2

1

1 2

0 2

¥

3

r s t u

v w x y

xQ v u

Lecture 11_8.5 – Slide 26 Rel. 13/05/2017 © Savino, Sanchez - 2017

Example

2

1

1 2

0 2

3

3

r s t u

v w x y

vQ u y

Lecture 11_8.5 – Slide 27 Rel. 13/05/2017 © Savino, Sanchez - 2017

Example

2

1

1 2

0 2

3

3

r s t u

v w x y

uQ y

Lecture 11_8.5 – Slide 28 Rel. 13/05/2017 © Savino, Sanchez - 2017

Example

2

1

1 2

0 2

3

3

r s t u

v w x y

yQ

Lecture 11_8.5 – Slide 29 Rel. 13/05/2017 © Savino, Sanchez - 2017

Example

2

1

1 2

0 2

3

3

r s t u

v w x y

Q

Lecture 11_8.5 – Slide 30 Rel. 13/05/2017 © Savino, Sanchez - 2017

Example: Resulting Tree

2

1 1

2

0

2

33

r

s

t

u

v

w

x

y

Lecture 11_8.5 – Slide 31 Rel. 13/05/2017 © Savino, Sanchez - 2017

BFS: The Code Again

BFS(G, s) {
initialize vertices;
Q = {s};
while (Q not empty) {

u = RemoveTop(Q);
for each v Î u->adj {

if (v->color == WHITE)
v->color = GREY;
v->d = u->d + 1;
v->p = u;
Enqueue(Q, v);

}
u->color = BLACK;

}
}

Touch every vertex: O(V)

u = every vertex, but only once

So v = every vertex
that appears in some
other vert’s adjacency
list

Lecture 11_8.5 – Slide 32 Rel. 13/05/2017 © Savino, Sanchez - 2017

Minimum Distance

• Given two vertices s and v on an undirected graph,
the minimum number of edges on a path from s to v
is the distance on the minimum path.
– The BFS computes this distance for each vertex

of the graph from the source vertex.

Lecture 11_8.5 – Slide 33 Rel. 13/05/2017 © Savino, Sanchez - 2017

BFS: Properties

• BFS calculates the shortest-path distance to the
source node
– Shortest-path distance d(s,v) = minimum number

of edges from s to v, or ¥ if v not reachable from
s

Lecture 11_8.5 – Slide 34 Rel. 13/05/2017 © Savino, Sanchez - 2017

BFS: Properties

• BFS builds breadth-first tree, in which paths to root
represent shortest paths in G
– Thus can use BFS to calculate shortest path

from one vertex to another in O(V+E) time

Lecture 11_8.5 – Slide 35 Rel. 13/05/2017 © Savino, Sanchez - 2017

Complexity

•BFS complexity is O(V+E).

• Q:
What will be the storage cost in addition to
storing the tree?

• A:
Total space used:
O(max(degree(v))) = O(E)

Lecture 11_8.5 – Slide 36 Rel. 13/05/2017 © Savino, Sanchez - 2017

Outline

– Introduction
– Breadth-First Search
– Depth-First Search

Lecture 11_8.5 – Slide 37 Rel. 13/05/2017 © Savino, Sanchez - 2017

Depth First Visit

The Depth-First Search (DFS) follows a different
approach.
• At each step the algorithm visits a vertex adjacent

to the last visited.
• When this is not possible, the algorithm goes back

to the last visited node with adjacent vertex that
still have to be visited.

DFS is usually a recursive function.
• Two parameters (time stamps) indicate the time

when the node was visited:
– d[u] first time visit
– f[u] last time visit

Lecture 11_8.5 – Slide 38 Rel. 13/05/2017 © Savino, Sanchez - 2017

Pseudo-code (1)

Lecture 11_8.5 – Slide 39 Rel. 13/05/2017 © Savino, Sanchez - 2017

Pseudo-code (2)

The white vertex u is visited

The edge (u,v) is traversed

U becomes black

Lecture 11_8.5 – Slide 40 Rel. 13/05/2017 © Savino, Sanchez - 2017

Note

• The coloring of the vertices follows this criteria:
– All vertices are white before beginning the visit.
– A vertex becomes gray when is visited for the

first time
– A vertex becomes black when all its adjacent

vertices have been visited.

Lecture 11_8.5 – Slide 41 Rel. 13/05/2017 © Savino, Sanchez - 2017

Example source: s

r s t ur s t u

v w x y

z

Lecture 11_8.5 – Slide 42 Rel. 13/05/2017 © Savino, Sanchez - 2017

Example Visit s

1

r s t u

v w x y

z

Lecture 11_8.5 – Slide 43 Rel. 13/05/2017 © Savino, Sanchez - 2017

Example Visit w

1

r s t u

2

v w x y

z

Lecture 11_8.5 – Slide 44 Rel. 13/05/2017 © Savino, Sanchez - 2017

Example Visit t

1 3

r s t u

2

v w x y

z

Lecture 11_8.5 – Slide 45 Rel. 13/05/2017 © Savino, Sanchez - 2017

Example Visit u

1 3 4

r s t u

2

v w x y

z

Lecture 11_8.5 – Slide 46 Rel. 13/05/2017 © Savino, Sanchez - 2017

Example Visit x

1 3 4

r s t u

2 5

v w x y

z

Lecture 11_8.5 – Slide 47 Rel. 13/05/2017 © Savino, Sanchez - 2017

Example Visit y

1 3 4

r s t u

2 5 6

v w x y

z

Lecture 11_8.5 – Slide 48 Rel. 13/05/2017 © Savino, Sanchez - 2017

Example Visit z

1 3 4

r s t u

2 5 6

v w x y

7

z

Lecture 11_8.5 – Slide 49 Rel. 13/05/2017 © Savino, Sanchez - 2017

Example Visit r

8 1 3 4

r s t u

2 5 6

v w x y

7

z

Lecture 11_8.5 – Slide 50 Rel. 13/05/2017 © Savino, Sanchez - 2017

Example Visit v

8 1 3 4

r s t u

9 2 5 6

v w x y

7

z

Lecture 11_8.5 – Slide 51 Rel. 13/05/2017 © Savino, Sanchez - 2017

Example Concludes the visit

8 1 3 4

r s t u

9 2 5 6

v w x y

7

z

Lecture 11_8.5 – Slide 52 Rel. 13/05/2017 © Savino, Sanchez - 2017

Example Resulting Tree

8

1

3

4

r

s

t

u9

2

5

6

v

w

x

y

7

z

Lecture 11_8.5 – Slide 53 Rel. 13/05/2017 © Savino, Sanchez - 2017

Complexity

• The complexity of the DFS visit is Q(V+E).

Lecture 11_8.5 – Slide 54 Rel. 13/05/2017 © Savino, Sanchez - 2017

DFS Forest

• The DFS builds a DFS forest, composed of one or
more DFS trees.

• The edges of the forest are called tree edges.

Lecture 11_8.5 – Slide 55 Rel. 13/05/2017 © Savino, Sanchez - 2017

Edge classification

• In a directed graph, edges can fall in one of 4
categories:
– Tree edges (T)
– Backward edges (B): they are not T edges, and

they connect a vertex with one of its parents
– Forward edges (F): they are not T or B edges and

they connect a vertex with one of its children
– Cross edges (C): the remaining edges.

Lecture 11_8.5 – Slide 56 Rel. 13/05/2017 © Savino, Sanchez - 2017

Edge classification

• DFS can be easily modified to classify edges.
• Every time the algorithm traverses an edge (u,v) it

checks the color of the v vertex:
– If it is white, the edge is a T edge
– If it is grey, the edge is a B edge
– If it is black, the edge is an F edge (if d[u]<d[v])

or a C edge (if d[u]>d[v]), where d is the
discovery time stamp.

Lecture 11_8.5 – Slide 57 Rel. 13/05/2017 © Savino, Sanchez - 2017

Visiting time stamps

• Each vertex has two time stamps:
– The first time stamp (or discovery time stamp)

records when a vertex is first discovered
– The second time stamp records when the search

finishes examining adjacency list of vertex.

Lecture 11_8.5 – Slide 58 Rel. 13/05/2017 © Savino, Sanchez - 2017

Example source: s

y z s t

x w v u

Lecture 11_8.5 – Slide 59 Rel. 13/05/2017 © Savino, Sanchez - 2017

Example DFS and intervals
computation

4/5

3/6

7/8 12/13

2/9 1/10

14/15

11/16

y z s t

x w v u

Lecture 11_8.5 – Slide 60 Rel. 13/05/2017 © Savino, Sanchez - 2017

Example Edges Classification

4/5

3/6

7/8 12/13

2/9 1/10

14/15

11/16

y z s t

x w v u

T T

T TTT

C

FB

C C

BB

Lecture 11_8.5 – Slide 61 Rel. 13/05/2017 © Savino, Sanchez - 2017

Example (3) Edges classification

s

z

y

x

w

t

v u

T

T

T

T

T T

B

B

C

C

C

C

F

Lecture 11_8.5 – Slide 62 Rel. 13/05/2017 © Savino, Sanchez - 2017

Edges classification – undirected graphs

• In a not directed graph there are no forward or
traversing edges.

Lecture 11_8.5 – Slide 63 Rel. 13/05/2017 © Savino, Sanchez - 2017

Cycles

• A directed graph DOES NOT HAVE CYCLES iff a
DFS does not produce backward edges.

Lecture 11_8.5 – Slide 64 Rel. 13/05/2017 © Savino, Sanchez - 2017

Example

r s t u

v w x y

z

Lecture 11_8.5 – Slide 65 Rel. 13/05/2017 © Savino, Sanchez - 2017

Example

2/17 1/18 5/14 6/13

r s t u

3/16 4/15 8/11 7/12

v w x y

DFS and time stamps

9/10

z

Lecture 11_8.5 – Slide 66 Rel. 13/05/2017 © Savino, Sanchez - 2017

Example

r s t u

v w x y

Edges classification

z

Lecture 11_8.5 – Slide 67 Rel. 13/05/2017 © Savino, Sanchez - 2017

Example

z
x

y
u

t
w

v
r

s

If there are B edges, the graph has
cycles

Lecture 11_8.5 – Slide 68 Rel. 13/05/2017 © Savino, Sanchez - 2017

Finding the cut vertices

• A DFS is used to classify each edge.
• A vertex v is a cut vertex IFF v has a child s so that

there are no B edges from s or from any of its
descendants to a predecessor of v.

Lecture 11_8.5 – Slide 69 Rel. 13/05/2017 © Savino, Sanchez - 2017

Example

r s t u

v w x y

z

Source s

Lecture 11_8.5 – Slide 70 Rel. 13/05/2017 © Savino, Sanchez - 2017

Example

2/17 1/18 5/14 6/13

r s t u

3/16 4/15 8/11 7/12

v w x y

DFS and time stamps

9/10

z

Lecture 11_8.5 – Slide 71 Rel. 13/05/2017 © Savino, Sanchez - 2017

Example

r s t u

v w x y

Edges classification

z

Lecture 11_8.5 – Slide 72 Rel. 13/05/2017 © Savino, Sanchez - 2017

Example

z
x

y
u

t
w

v
r

s

Search tree

Lecture 11_8.5 – Slide 73 Rel. 13/05/2017 © Savino, Sanchez - 2017

Example

z
x

y
u

t
w

v
r

s

Cut vertices identification

Lecture 11_8.5 – Slide 74 Rel. 13/05/2017 © Savino, Sanchez - 2017

Note

• The source vertex is a cut vertex IFF at least one of
its children does not belong to any of the subtrees
starting from its other adjacent nodes.

Lecture 11_8.5 – Slide 75 Rel. 13/05/2017 © Savino, Sanchez - 2017

BFS and DFS exercise

• Perform BFS starting from A:
???

• Perform DFS starting from A:
???

A B

E D

I HG CF

Lecture 11_8.5 – Slide 76 Rel. 13/05/2017 © Savino, Sanchez - 2017

BFS and DFS solution

• Perform BFS starting from A:
A – B – F – C – G – E – I – H

• Perform DFS starting from A:
A – B – C – H – G – I – E – F // D

A B

E D

I HG CF

Lecture 11_8.5 – Slide 77 Rel. 13/05/2017 © Savino, Sanchez - 2017

References

• A.V. Aho, J.E. Hopcroft, J.D. Ullman:
“Data Structures and Algorithms,”
Addison Wesley, Reading MA (USA), 1983
pp. 198-252

• G. Ausiello, A. Marchetti-Spaccamela, M. Protasi:
“Teoria e Progetto di Algoritmi Fondamentali,”
Ed. Franco Angeli, Milano, 1985, pp. 265-364

• E. Horowitz, S. Sahni:
“Fundamentals of Computer Algorithms,”
Pittman, London (UK), 1978, pp. 272-325

1

Lecture 11_8.5 – Slide 78 Rel. 13/05/2017 © Savino, Sanchez - 2017

References

• C.L. Liu:
“Introduction to Combinatorial Mathematics,”
McGraw-Hill Book Company, New York (USA),
pp. 167-297

• R. Sedgewick:
“Algorithms in C,”
Addison Wesley, Reading MA (USA), 1990
pp. 415-508

• C.J. Van Wyk:
“Data Structures and C Programs,” Addison
Wesley, Reading MA (USA), 1988
pp. 313-341

2

Lecture 11_8.5 – Slide 79 Rel. 13/05/2017 © Savino, Sanchez - 2017

References

• R.J. Wilson:
“Introduzione alla teoria dei grafi,”
Cremonese, Roma 1978, pp. 1-155

3

Lecture 11_8.5 – Slide 80 Rel. 13/05/2017 © Savino, Sanchez - 2017

Малые Автюхи, Калинковичский район, Республики Беларусь

