
Lecture
11_8.2 The Standard

Template Library

Alessandro SAVINO
Politecnico di Torino (Italy)
alessandro.savino@polito.it

www.testgroup.polito.it

Lecture 11_8.2 – Slide 2 Rel. 24/04/2016 © Savino, Sanchez - 2017

License Information

This work is licensed under the
Creative Commons BY-NC

License

To view a copy of the license, visit:
http://creativecommons.org/licenses/by-nc/3.0/legalcode

Lecture 11_8.2 – Slide 3 Rel. 24/04/2016 © Savino, Sanchez - 2017

Disclaimer

• We disclaim any warranties or representations as
to the accuracy or completeness of this material.

• Materials are provided “as is” without warranty of
any kind, either express or implied, including
without limitation, warranties of merchantability,
fitness for a particular purpose, and non-
infringement.

• Under no circumstances shall we be liable for any
loss, damage, liability or expense incurred or
suffered which is claimed to have resulted from
use of this material.

Lecture 11_8.2 – Slide 4 Rel. 24/04/2016 © Savino, Sanchez - 2017

Goal

– This lecture presents a global overview of
the basic concepts behind the C++ Template
Library.

Lecture 11_8.2 – Slide 5 Rel. 24/04/2016 © Savino, Sanchez - 2017

Prerequisites

– Basic knowledge of C++ programming language

Lecture 11_8.2 – Slide 6 Rel. 24/04/2016 © Savino, Sanchez - 2017

Homework

– None

Lecture 11_8.2 – Slide 7 Rel. 24/04/2016 © Savino, Sanchez - 2017

Outline

• The Standard Template Library
• The STL’s Components
• Containers definition
• STL Containers
• STL Containers: The Vector
• STL Iterators
• STL Algorithms

Lecture 11_8.2 – Slide 8 Rel. 24/04/2016 © Savino, Sanchez - 2017

Outline

• The Standard Template Library
• The STL’s Components
• Containers definition
• STL Containers
• STL Containers: The Vector
• STL Iterators
• STL Algorithms

Lecture 11_8.2 – Slide 9 Rel. 24/04/2016 © Savino, Sanchez - 2017

The Standard Template Library

• The STL is a complex piece of software engineering
that uses some of C++'s most sophisticated
features

• STL provides an incredible amount of generic
programming power

• It provides general purpose, “templatized” classes
and functions

Lecture 11_8.2 – Slide 10 Rel. 24/04/2016 © Savino, Sanchez - 2017

The STL

• Designed by Alex Stepanov
• General aim: the most general, most efficient, most

flexible representation of concepts (algorithms,
containers, etc.)

• Works for any data type:
– integers, floating-point numbers, polynomials, ...

Lecture 11_8.2 – Slide 11 Rel. 24/04/2016 © Savino, Sanchez - 2017

The STL

• Deals with organization of code and data
– Built-in types, user-defined types, and data

structures
• Optimizing disk access was among its original uses

– Performance was always a key concern

Lecture 11_8.2 – Slide 12 Rel. 24/04/2016 © Savino, Sanchez - 2017

Outline

• The Standard Template Library
• The STL’s Components
• Containers definition
• STL Containers
• STL Containers: The Vector
• STL Iterators
• STL Algorithms

Lecture 11_8.2 – Slide 13 Rel. 24/04/2016 © Savino, Sanchez - 2017

The STL’s Components

• Container Classes
• Generic Algorithms
• Iterators
• Function Objects
• Allocators
• Adaptors

Lecture 11_8.2 – Slide 14 Rel. 24/04/2016 © Savino, Sanchez - 2017

The STL’s Components

• Container Classes
– generic multiple-data managers

• Generic Algorithms
• Iterators
• Function Objects
• Allocators
• Adaptors

Lecture 11_8.2 – Slide 15 Rel. 24/04/2016 © Savino, Sanchez - 2017

The STL’s Components

• Container Classes
• Generic Algorithms

– common use algorithms (~60 standard
algorithms) without any data bound

. searching (e.g. find())

. sorting (e.g. sort())

. mutating (e.g. transform())

. numerical (e.g. accumulate())
• Iterators
• Function Objects
• Allocators
• Adaptors

Lecture 11_8.2 – Slide 16 Rel. 24/04/2016 © Savino, Sanchez - 2017

The STL’s Components

• Container Classes
• Generic Algorithms
• Iterators

– “container walkers” for accessing container
elements

– Iterators provide an abstraction of container
access, which in turn allows for generic
algorithms

• Function Objects
• Allocators
• Adaptors

Lecture 11_8.2 – Slide 17 Rel. 24/04/2016 © Savino, Sanchez - 2017

The STL’s Components

• Container Classes
• Generic Algorithms
• Iterators
• Function Objects

– C++ objects that can be called like a function to
implement “callbacks”

• Allocators
• Adaptors

Lecture 11_8.2 – Slide 18 Rel. 24/04/2016 © Savino, Sanchez - 2017

The STL Basic Model

• manipulate data, but
don’t know about
containers

Algorithms

• Algorithms and
containers interact
through iterators
• Each container has

its own iterator types

Iterators • store data, but don’t
know about algorithms

Containers

Lecture 11_8.2 – Slide 19 Rel. 24/04/2016 © Savino, Sanchez - 2017

STL Advantages

• Standardized
• Thin & efficient
• Little inheritance; no virtual functions
• Small
• Flexible and extensible
• Naturally open source

Lecture 11_8.2 – Slide 20 Rel. 24/04/2016 © Savino, Sanchez - 2017

STL Disadvantages

• Template syntax
• Difficult to read & decipher
• Poor or incomplete compiler support
• Code bloat potential
• No constraints on template types
• Limited container types

Lecture 11_8.2 – Slide 21 Rel. 24/04/2016 © Savino, Sanchez - 2017

Outline

• The Standard Template Library
• The STL’s Components
• Containers definition
• STL Containers
• STL Containers: The Vector
• STL Iterators
• STL Algorithms

Lecture 11_8.2 – Slide 22 Rel. 24/04/2016 © Savino, Sanchez - 2017

Container Definition

• A Container is an object that holds another object
• More powerful and flexible than arrays

– It will grow or shrink dynamically and manage
their own memory

– It keeps track of how many objects they hold
• They belong to the STL Library.

Lecture 11_8.2 – Slide 23 Rel. 24/04/2016 © Savino, Sanchez - 2017

Container Class

• A container class is capable of holding a collection
of items.
– you must care only about the operation you need

for the actual application!
• In C++, container classes can be implemented as a

class, along with member functions to add, remove,
and examine items.
– Containers provide iterators that point to its

elements.
– Containers provide a minimal set of operations

for manipulating elements

Lecture 11_8.2 – Slide 24 Rel. 24/04/2016 © Savino, Sanchez - 2017

Outline

• The Standard Template Library
• The STL’s Components
• Containers definition
• STL Containers
• STL Containers: The Vector
• STL Iterators
• STL Algorithms

Lecture 11_8.2 – Slide 25 Rel. 24/04/2016 © Savino, Sanchez - 2017

Types of Container

Containers

Standard

Sequence

Vector
String
Deque

List

Associative

Set
Multiset

Map
Multimap

Non-Standard

Sequence

Slist
Rope

Associative

Hash_Set
Hash_Multiset

Hash_Map
Hash_Multimap

Lecture 11_8.2 – Slide 26 Rel. 24/04/2016 © Savino, Sanchez - 2017

STL Containers

• Sequence Container
– Stores data by position in linear order:

. First element, second element , etc:
• Associate Container

– Stores elements by key, such as name, social
security number or part number

– Access an element by its key which may bear no
relationship to the location of the element in the
container

Lecture 11_8.2 – Slide 27 Rel. 24/04/2016 © Savino, Sanchez - 2017

Outline

• The Standard Template Library
• The STL’s Components
• Containers definition
• STL Containers
• STL Containers: The Vector
• STL Iterators
• STL Algorithms

Lecture 11_8.2 – Slide 28 Rel. 24/04/2016 © Savino, Sanchez - 2017

Vector Container (I)

• Generalized array that stores a collection of
elements of the same data type
– It is similar to an array

. Vectors allow access to its elements by using
an index in the range from 0 to n-1 where n is
the size of the vector

• Vector has operations that allow the collection to
grow and contract dynamically at the rear of the
sequence
– Do not need to specify quantity of elements

Lecture 11_8.2 – Slide 29 Rel. 24/04/2016 © Savino, Sanchez - 2017

Vector Container (II)

• Index access ([] operator) like an array
• Vectors allow to add / remove an element in

constant time at the last of vector
• Vectors allow to add / remove an element in linear

time in the middle of vector
– try to do that with arrays...

• It is the type of sequence container that should be
used by default.

Lecture 11_8.2 – Slide 30 Rel. 24/04/2016 © Savino, Sanchez - 2017

Vector Basic Usage

• Allows direct access to the elements via an index
operator

• Indices for the vector elements are in the range
from 0 to size() -1

#include <vector>

int main() {
vector <int> v(20);
v[5]=15;
cout << ”Vector Size: “ << v.size();

}

Lecture 11_8.2 – Slide 31 Rel. 24/04/2016 © Savino, Sanchez - 2017

Vector Basic Usage

• Allows direct access to the elements via an index
operator

• Indices for the vector elements are in the range
from 0 to size() -1

#include <vector>

int main() {
vector <int> v(20);
v[5]=15;
cout << ”Vector Size: “ << v.size();

}
This means ”generate a vector of 20 (int) items”

Lecture 11_8.2 – Slide 32 Rel. 24/04/2016 © Savino, Sanchez - 2017

Vector Basic Usage

• Allows direct access to the elements via an index
operator

• Indices for the vector elements are in the range
from 0 to size() -1

#include <vector>

int main() {
vector <int> v(20);
v[5]=15;
cout << ”Vector Size: “ << v.size();

}
If you want to set all items to a specific value, you must

resort to another constructor:
vector<T> v(num, val);

Lecture 11_8.2 – Slide 33 Rel. 24/04/2016 © Savino, Sanchez - 2017

Vector Basic Usage

• Despite array limitation, iterative fill of the vector is
even more simple, using the proper method.

#include <vector>

int main() {
vector <int> v;
int value;
cin >> value;
while (value > 0) {

v.push_back(value);
cin >> value;

}
}

Lecture 11_8.2 – Slide 34 Rel. 24/04/2016 © Savino, Sanchez - 2017

Vector Basic Usage

• Despite array limitation, iterative fill of the vector is
even more simple, using the proper method.

#include <vector>

int main() {
vector <int> v;
int value;
cin >> value;
while (value > 0) {

v.push_back(value);
cin >> value;

}
}

Wait... What?!?!?
You did not use any index?!?!?

And the vector size?!?!?

Lecture 11_8.2 – Slide 35 Rel. 24/04/2016 © Savino, Sanchez - 2017

Vector Basic Usage

• Despite array limitation, iterative fill of the vector is
even more simple, using the proper method.

#include <vector>

int main() {
vector <int> v;
int value;
cin >> value;
while (value > 0) {

v.push_back(value);
cin >> value;

}
}

push_back method add the parameter to the end of v,
increasing the size of v by 1.

It also increases the capacity of v if v was full before the
new value was added.

Lecture 11_8.2 – Slide 36 Rel. 24/04/2016 © Savino, Sanchez - 2017

Vector Advanced Usages

• Due to its class nature, you can resort to the copy
constructor to duplicate one vector into another
one.

#include <vector>

int main() {
vector <int> v(20);
...
vector <int> v2(v);

}

Lecture 11_8.2 – Slide 37 Rel. 24/04/2016 © Savino, Sanchez - 2017

Vector Advanced Usages

• It is also possible to implement even more
operations:
– clear the content (and set the size to 0)

#include <vector>

int main() {
vector <int> v(20);
...
v.clear();

}

Lecture 11_8.2 – Slide 38 Rel. 24/04/2016 © Savino, Sanchez - 2017

Vector Advanced Usages

• It is also possible to implement even more
operations:
– resize it (if new size is lower it keeps current

size, but take care of the data...)

#include <vector>

int main() {
vector <int> v(20);
...
v.resize(23); // new size is 23

}

Lecture 11_8.2 – Slide 39 Rel. 24/04/2016 © Savino, Sanchez - 2017

Vector Advanced Usages

• It is also possible to implement even more
operations:
– resize it (if new size is lower it keeps current

size, but take care of the data...)

#include <vector>

int main() {
vector <int> v(20);
...
v.resize(19); // new size is 20

}

Lecture 11_8.2 – Slide 40 Rel. 24/04/2016 © Savino, Sanchez - 2017

Vector Advanced Usages

• It is also possible to implement even more
operations:
– resize it (if new size is lower it keeps current

size, but take care of the data...)

#include <vector>

int main() {
vector <int> v(20);
...
v.resize(19); // new size is 20

}

but index 19 could be not meaningful anymore!

Lecture 11_8.2 – Slide 41 Rel. 24/04/2016 © Savino, Sanchez - 2017

Vector Advanced Usages

• It is also possible to implement even more
operations:
– checking it’s emptiness

#include <vector>

int main() {
vector <int> v(20);
...
if (v.empty())

cout << “Vector v is empty!”;
}

Lecture 11_8.2 – Slide 42 Rel. 24/04/2016 © Savino, Sanchez - 2017

Vector Advanced Usages

• It is also possible to implement even more
operations:
– checking it’s emptiness

#include <vector>

int main() {
vector <int> v(20);
...
if (v.empty())

cout << “Vector v is empty!”;
}

Remember: empty return a bool, it does not empty the
vector!

Lecture 11_8.2 – Slide 43 Rel. 24/04/2016 © Savino, Sanchez - 2017

Vector Common Usage

• Last but not least... since vector is a template class,
you can define vectors of any type you need.

#include <vector>
#include “Rectangle.hpp”

int main() {
vector <int> v(20);
vector < Rectangle <int> > v2;

}

Lecture 11_8.2 – Slide 44 Rel. 24/04/2016 © Savino, Sanchez - 2017

Vector Common Usage

• Last but not least... since vector is a template class,
you can define vectors of any type you need.

#include <vector>
#include “Rectangle.hpp”

int main() {
vector <int> v(20);
vector < Rectangle <int> > v2;

}

... also of template classes (if they are not containers...)

Lecture 11_8.2 – Slide 45 Rel. 24/04/2016 © Savino, Sanchez - 2017

Vector vs Array

• When dealing with arrays, several issue may reduce
the flexibility in your coding.
– Let’s see some example starting from this very

basic code
int main() {
int v[10];
...
foo(v);

}

Lecture 11_8.2 – Slide 46 Rel. 24/04/2016 © Savino, Sanchez - 2017

Vector vs Array

• Passing arrays to functions

int main() {
int v[10];
...
foo(v);

}

Is there a way to let foo now how
many actual elements are stored
in v without actually modify foo

function?

Lecture 11_8.2 – Slide 47 Rel. 24/04/2016 © Savino, Sanchez - 2017

Vector vs Array

• Passing arrays to functions

int main() {
int v[10];
...
foo(v, v_size);

}

No!
You must add a size_t

actual_size variable to the
prototype

void foo(int *vect);
⬇

void foo(int *vect, size_t actual_size);

Lecture 11_8.2 – Slide 48 Rel. 24/04/2016 © Savino, Sanchez - 2017

Vector vs Array

• Passing vector to functions
– The container solution

int main() {
vector<int> v;
...
foo(v);

}

void foo(vector<int> vect);
⬇

the actual size is retrieved
“dynamically” by resorting to

.size() container’s public method.

Lecture 11_8.2 – Slide 49 Rel. 24/04/2016 © Savino, Sanchez - 2017

Vector vs Array

• Working on an array like a variable passed by
value.

int main() {
int v[10];
...
foo(v);

}

Is there a way to let foo work on
v without actually modify it?

Lecture 11_8.2 – Slide 50 Rel. 24/04/2016 © Savino, Sanchez - 2017

Vector vs Array

• Working on an array like a variable passed by
value.

int main() {
int v[10];
...
foo(v);

}

Actually no, unless you work on
a copy of v made:

Lecture 11_8.2 – Slide 51 Rel. 24/04/2016 © Savino, Sanchez - 2017

Vector vs Array

• Working on an array like a variable passed by
value.
– Some solutions are available but...

int main() {
int v[10];
...
for (i=0;i<10;i++)

v2[i]=v[i];
foo(v2);

}

Actually no, unless you work on
a copy of v made:

1. before calling the function

1. This must be done ever (lots
of extra vectors required).

2. You still have to cope with the
actual size vs max size of the
vector...

Lecture 11_8.2 – Slide 52 Rel. 24/04/2016 © Savino, Sanchez - 2017

Vector vs Array

• Working on an array like a variable passed by
value.
– Some solutions are available but...

int main() {
int v[10];
...
foo(v);

}

Actually no, unless you work on
a copy of v made:

1. before calling the function
2. same code but inside foo

1. You still have to cope with the
actual size vs max size of the
vector by modifying the
function

Lecture 11_8.2 – Slide 53 Rel. 24/04/2016 © Savino, Sanchez - 2017

Vector vs Array

• Working on a vector like a variable passed by value.
– Previous container solution already provide you

of a good way of working things out

int main() {
vector<int> v;
...
foo(v);

}

void foo(vector<int> vect);
⬇

the container is passed by value
because it is a single object not a

reference to memory!

Lecture 11_8.2 – Slide 54 Rel. 24/04/2016 © Savino, Sanchez - 2017

Vector vs Array

• Most complex of all: returning an array.
– Red now means error!

int main() {
int v[10];
...
v = foo();

}

Lecture 11_8.2 – Slide 55 Rel. 24/04/2016 © Savino, Sanchez - 2017

Vector vs Array

• Most complex of all: returning an array.
– Red now means error!

int main() {
int v[10];
...
v = foo();

}

Lecture 11_8.2 – Slide 56 Rel. 24/04/2016 © Savino, Sanchez - 2017

Vector vs Array

• Most complex of all: returning an array.
– Red now means error!

int main() {
int v[10];
...
v = foo();

}

int [] foo(); cannot be defined in
C. In fact, v is a static reference
to a vector, thus an address, and

you cannot modify it.

Lecture 11_8.2 – Slide 57 Rel. 24/04/2016 © Savino, Sanchez - 2017

Vector vs Array

• Most complex of all: returning an array.
– You can resort to dynamic memory but...

int main() {
int *v;
...
v = foo();

}

int * foo();
⬇

this is a working solution, with several
drawbacks:

1. the actual size of v?

Lecture 11_8.2 – Slide 58 Rel. 24/04/2016 © Savino, Sanchez - 2017

Vector vs Array

• Most complex of all: returning an array.
– You can resort to dynamic memory but...

int main() {
int *v;
size_t s;
...
v = foo(&s);

}

int * foo();
⬇

this is a working solution, with several
drawbacks:

1. the actual size of v?
⬇

int * foo(size_t * actual_size);
⬇

you must change the prototype to
pass one extra variable by reference

Lecture 11_8.2 – Slide 59 Rel. 24/04/2016 © Savino, Sanchez - 2017

Vector vs Array

• Most complex of all: returning an array.
– You can resort to dynamic memory but...

int main() {
int *v;
...
v = foo();

}

int * foo();
⬇

this is a working solution, with several
drawbacks:

1. the actual size of v?
2. when & where v is destroyed?

Lecture 11_8.2 – Slide 60 Rel. 24/04/2016 © Savino, Sanchez - 2017

Vector vs Array

• Most complex of all: returning an array.
– You can resort to dynamic memory but...

int main() {
int *v;
...
v = foo();
...
free(v);
...

}

int * foo();
⬇

this is a working solution, with several
drawbacks:

1. the actual size of v?
2. when & where v is destroyed?

⬇
a free operation is required!

Lecture 11_8.2 – Slide 61 Rel. 24/04/2016 © Savino, Sanchez - 2017

Vector vs Array

• Most complex of all: returning an array.
– Very easy using containers

int main() {
vector<int> v;
...
v = foo();
...

}

vector<int> foo();
⬇

because v is a container, and is
provided by a copy constructor
and/or a = operator, once you

return a vector object you get it
copied into v.

End of it.

Lecture 11_8.2 – Slide 62 Rel. 24/04/2016 © Savino, Sanchez - 2017

Vector vs Array

• Eventually... try to enlarge/reduce the array size.

int main() {
int v[10];
...
I_want_to_resize_v(v);

}

Lecture 11_8.2 – Slide 63 Rel. 24/04/2016 © Savino, Sanchez - 2017

Vector vs Array

• Eventually... try to enlarge/reduce the array size.

int main() {
int v[10];
...
I_want_to_resize_v(v);

}
Well... Do I really need to say at this

point: good luck with that too?

Lecture 11_8.2 – Slide 64 Rel. 24/04/2016 © Savino, Sanchez - 2017

Outline

• The Standard Template Library
• The STL’s Components
• Containers definition
• STL Containers
• STL Containers: The Vector
• STL Iterators
• STL Algorithms

Lecture 11_8.2 – Slide 65 Rel. 24/04/2016 © Savino, Sanchez - 2017

Iterators Definition

• An iterator is an extension to the pointer
– It implements the standard pointer operators

• It gives you the ability to cycle through the contents
of the container like a pointer to cycle through an
array

• Iterators used by the algorithms to move through
the containers.

class_name<template_parameters>::iterator name;

Lecture 11_8.2 – Slide 66 Rel. 24/04/2016 © Savino, Sanchez - 2017

Iterators Definition

• An iterator is an extension to the pointer
– It implements the standard pointer operators

• It gives you the ability to cycle through the contents
of the container like a pointer to cycle through an
array

• Iterators used by the algorithms to move through
the containers.

class_name<template_parameters>::iterator name;

• name - name of the iterator (like a variable name);
• class_name - name of the STL container;
• template_parameters - parameters to the template;

Lecture 11_8.2 – Slide 67 Rel. 24/04/2016 © Savino, Sanchez - 2017

Iterators Properties

• Each container class in STL has a corresponding
iterator that functions appropriately for the
container
– E.g., an iterator in a vector class allows random

access while a list class does not allow that.

Lecture 11_8.2 – Slide 68 Rel. 24/04/2016 © Savino, Sanchez - 2017

Iterators Hierarchy

• Iterators are instantiation of classes.
– It exist a hierarchy of Iterators.

. They differ by the kind of operations allowed.

RandomAccessIterator

BidirectionalIterator

ForwardIterator

InputIterator

• random access

• decrement

• increment (with multiple passes)

• read
• increment (without multiple passes)

Lecture 11_8.2 – Slide 69 Rel. 24/04/2016 © Savino, Sanchez - 2017

Iterators Hierarchy

• Iterators are instantiation of classes.
– It exist a hierarchy of Iterators.

. They differ by the kind of operations allowed.

OutputIterator

• write
• increment (without multiple

passes)

Lecture 11_8.2 – Slide 70 Rel. 24/04/2016 © Savino, Sanchez - 2017

Iterators Hierarchy

• Iterators are instantiation of classes.
– It exist a hierarchy of Iterators.

. They differ by the kind of operations allowed.

OutputIterator

• write
• increment (without multiple

passes)

If an iterator falls into one of previous
categories and also satisfies the

requirements of OutputIterator, then it is
called a mutable iterator and supports
both input and output. Non-mutable

iterators are called constant iterators.

Lecture 11_8.2 – Slide 71 Rel. 24/04/2016 © Savino, Sanchez - 2017

Iterators Basic Operations

• General operations allow to:
– assign an iterator a value, i.e., the start of a

container;
– access the value that an iterator “points to”;
– increment the iterator to point to the next value;
– check if the iterator has reached a predetermined

value, i.e., the end of a container;

Lecture 11_8.2 – Slide 72 Rel. 24/04/2016 © Savino, Sanchez - 2017

Iterators Basic Operations

• General operations allow to:
– assign an iterator a value, i.e., the start of a

container;
. = operator;

– access the value that an iterator “points to”;
– increment the iterator to point to the next value;
– check if the iterator has reached a predetermined

value, i.e., the end of a container;

Lecture 11_8.2 – Slide 73 Rel. 24/04/2016 © Savino, Sanchez - 2017

Iterators Basic Operations

• General operations allow to:
– assign an iterator a value, i.e., the start of a

container;
– access the value that an iterator “points to”;

. * operator
– increment the iterator to point to the next value;
– check if the iterator has reached a predetermined

value, i.e., the end of a container;

Lecture 11_8.2 – Slide 74 Rel. 24/04/2016 © Savino, Sanchez - 2017

Iterators Basic Operations

• General operations allow to:
– assign an iterator a value, i.e., the start of a

container;
– access the value that an iterator “points to”;
– increment the iterator to point to the next value;

. +, +=, ++ operators
– check if the iterator has reached a predetermined

value, i.e., the end of a container;

Lecture 11_8.2 – Slide 75 Rel. 24/04/2016 © Savino, Sanchez - 2017

Iterators Basic Operations

• General operations allow to:
– assign an iterator a value, i.e., the start of a

container;
– access the value that an iterator “points to”;
– increment the iterator to point to the next value;

. +, +=, ++ operators
– check if the iterator has reached a predetermined

value, i.e., the end of a container;

when the iterator supports
decrement, include -, -=, – operators!

Lecture 11_8.2 – Slide 76 Rel. 24/04/2016 © Savino, Sanchez - 2017

Iterators Basic Operations

• General operations allow to:
– assign an iterator a value, i.e., the start of a

container;
– access the value that an iterator “points to”;
– increment the iterator to point to the next value;
– check if the iterator has reached a predetermined

value, i.e., the end of a container;
. !=, == operators

Lecture 11_8.2 – Slide 77 Rel. 24/04/2016 © Savino, Sanchez - 2017

Iterators Example

#include <vector>

#include <iterator>

int main()

{

vector<int> v(6, 0);

vector<int>::iterator it = v.begin();

for (; it != v.end(); it++)

cout << (*it)++ << “ “;

cout << endl;

}

Lecture 11_8.2 – Slide 78 Rel. 24/04/2016 © Savino, Sanchez - 2017

Iterators Example

#include <vector>

#include <iterator>

int main()

{

vector<int> v(6, 0);

vector<int>::iterator it = v.begin();
for (; it != v.end(); it++)

cout << (*it)++ << “ “;

cout << endl;

}

1. Iterator
definition

Lecture 11_8.2 – Slide 79 Rel. 24/04/2016 © Savino, Sanchez - 2017

Iterators Example

#include <vector>

#include <iterator>

int main()

{

vector<int> v(6, 0);

vector<int>::iterator it = v.begin();
for (; it != v.end(); it++)

cout << (*it)++ << “ “;

cout << endl;

}

2. Iterator
assignment

Lecture 11_8.2 – Slide 80 Rel. 24/04/2016 © Savino, Sanchez - 2017

Iterators Example

#include <vector>

#include <iterator>

int main()

{

vector<int> v(6, 0);

vector<int>::iterator it = v.begin();

for (; it != v.end(); it++)
cout << (*it)++ << “ “;

cout << endl;

}

3. Iterator
check

Lecture 11_8.2 – Slide 81 Rel. 24/04/2016 © Savino, Sanchez - 2017

Iterators Example

#include <vector>

#include <iterator>

int main()

{

vector<int> v(6, 0);

vector<int>::iterator it = v.begin();

for (; it != v.end(); it++)
cout << (*it)++ << “ “;

cout << endl;

}

4. Iterator
increment

Lecture 11_8.2 – Slide 82 Rel. 24/04/2016 © Savino, Sanchez - 2017

Iterators Example

#include <vector>

#include <iterator>

int main()

{

vector<int> v(6, 0);

vector<int>::iterator it = v.begin();

for (; it != v.end(); it++)

cout << (*it)++ << “ “;
cout << endl;

}

5. Iterator
dereferenced

access

Lecture 11_8.2 – Slide 83 Rel. 24/04/2016 © Savino, Sanchez - 2017

Iterators Example

#include <vector>

#include <iterator>

int main()

{

vector<int> v(6, 0);

vector<int>::iterator it = v.begin();

for (; it != v.end(); it++)

cout << (*it)++ << “ “;

cout << endl;

}
v.begin() and v.end()

return the start and the
end of the container data.

if the container is empty
v.begin() == v.end()

Lecture 11_8.2 – Slide 84 Rel. 24/04/2016 © Savino, Sanchez - 2017

Iterators Example

#include <vector>

#include <iterator>

int main()

{

vector<int> v(6, 0);

vector<int>::iterator it = v.begin();

for (; it != v.end(); it++)

cout << (*it)++ << “ “;

cout << endl;

} v.begin() and v.end()
”point” to valid addresses.

there is no null pointer
value for an iterator!

Lecture 11_8.2 – Slide 85 Rel. 24/04/2016 © Savino, Sanchez - 2017

Iterators Example

#include <vector>

#include <iterator>

int main()

{

vector<int> v(6, 0);

vector<int>::iterator it = v.begin();

for (; it != v.end(); it++)

cout << (*it)++ << “ “;

cout << endl;

}
v.end() returns an iterator
which is the past-the-end
value for the container.

there is no null pointer
value for an iterator!

Lecture 11_8.2 – Slide 86 Rel. 24/04/2016 © Savino, Sanchez - 2017

Outline

• The Standard Template Library
• The STL’s Components
• Containers definition
• STL Containers
• STL Containers: The Vector
• STL Iterators
• STL Algorithms

Lecture 11_8.2 – Slide 87 Rel. 24/04/2016 © Savino, Sanchez - 2017

STL Algorithms

• Used generically across a variety of containers.
• Many algorithms operate on sequence of elements

defined by pairs of iterators
– Start and End

• It is possible to create new algorithms that operate
in a similar fashion so they can be used with the
STL containers and iterators.

Lecture 11_8.2 – Slide 88 Rel. 24/04/2016 © Savino, Sanchez - 2017

STL Algorithms (II)

• Mutating Sequence Algorithms
– like copy(), remove(), replace(), fill(), swap(), etc.,

• Non Modifying sequence Algorithms
– like find(), count(),search(), mismatch(), and

equal()
• Numerical Algorithms

– accumulate(), partial_sum(), inner_product(), and
adjacent_difference()

Lecture 11_8.2 – Slide 89 Rel. 24/04/2016 © Savino, Sanchez - 2017

STL Algorithms: Principles

• A generic container organizes its items in the
following way:

…

begin: end:

container.begin() container.end()

Lecture 11_8.2 – Slide 90 Rel. 24/04/2016 © Savino, Sanchez - 2017

STL Algorithms: Principles

• Then a generic algorithm is able to move across the
data by using a proper iterator

…

begin: end:

iterator it = container.begin()

Lecture 11_8.2 – Slide 91 Rel. 24/04/2016 © Savino, Sanchez - 2017

STL Algorithms: Principles

• Then a generic algorithm is able to move across the
data by using a proper iterator.

…

begin: end:

it++

Lecture 11_8.2 – Slide 92 Rel. 24/04/2016 © Savino, Sanchez - 2017

STL Algorithms: Principles

• It may continue until it reaches the end.
– And/or the algorithm finds what it was looking

for.

…

begin: end:

it

Lecture 11_8.2 – Slide 93 Rel. 24/04/2016 © Savino, Sanchez - 2017

STL Algorithms: find

• The most simple algorithm in the STL is the find
function
– Like all functions is in the form of a template

function

template <class InputIterator, class T>
InputIterator find (InputIterator first,
InputIterator last, const T& val);

Lecture 11_8.2 – Slide 94 Rel. 24/04/2016 © Savino, Sanchez - 2017

STL Algorithms: find

• The most simple algorithm in the STL is the find
function
– Like all functions is in the form of a template

function
– Returns an InputIterator

template <class InputIterator, class T>
InputIterator find (InputIterator first,
InputIterator last, const T& val);

Lecture 11_8.2 – Slide 95 Rel. 24/04/2016 © Savino, Sanchez - 2017

STL Algorithms: find

• The most simple algorithm in the STL is the find
function
– Like all functions is in the form of a template

function
– Returns an InputIterator
– Receives the first and the last elements for the

search

template <class InputIterator, class T>
InputIterator find (InputIterator first,
InputIterator last, const T& val);

Lecture 11_8.2 – Slide 96 Rel. 24/04/2016 © Savino, Sanchez - 2017

STL Algorithms: find

• The most simple algorithm in the STL is the find
function
– Like all functions is in the form of a template

function
– Returns an InputIterator
– Receives the first and the last elements for the

search
– Expect a third argument with the value to search

(still in the form of a template value)

template <class InputIterator, class T>
InputIterator find (InputIterator first,
InputIterator last, const T& val);

Lecture 11_8.2 – Slide 97 Rel. 24/04/2016 © Savino, Sanchez - 2017

STL Algorithms: find example

• Notice the function usage and the post-function
check

#include <algorithm>
int main ()
{
vector<int> myvector (5);
...
vector<int>::iterator it;
it = find (myvector.begin(),

myvector.end(), 3);
if (it != myvector.end())

cout << ”I found 3!" << endl;
return 0;

}

Lecture 11_8.2 – Slide 98 Rel. 24/04/2016 © Savino, Sanchez - 2017

STL Algorithms: other examples

• Lots of common algorithm are already at your
disposal.

#include <algorithm>

// return num elements equal to 7
int i = count(c.begin(), c.end(), 7);

// fill the container with elements set to 7
fill(c.begin(), c.end(), 7);

// find min or max element (with default comparison)
c::iterator min_it = min_element(c.begin(), c.end());
c::iterator max_it = max_element(c.begin(), c.end());

Lecture 11_8.2 – Slide 99 Rel. 24/04/2016 © Savino, Sanchez - 2017

STL Algorithms: Advanced

• Most of the algorithms can work with Function
Object.
– Template function that can be programmed as

callback functions
. Remember the pointer-to-function concept.

– Some are already defined in the <functional>
part of the STL library.

Lecture 11_8.2 – Slide 100 Rel. 24/04/2016 © Savino, Sanchez - 2017

STL Algorithms: Advanced

...

#include <algorithm>

#include <functional>

int increase_int (int i) { return ++i; }

int main () {

std::vector<int> vect1, vect2;

for (int i=1; i<6; i++)

vect1.push_back (i);

vect2.resize(vect1.size());

transform (vect1.begin(), vect1.end(),

vect2.begin(), increase_int);

Lecture 11_8.2 – Slide 101 Rel. 24/04/2016 © Savino, Sanchez - 2017

STL Algorithms: Advanced

...

#include <algorithm>
#include <functional>
int increase_int (int i) { return ++i; }

int main () {

std::vector<int> vect1, vect2;

for (int i=1; i<6; i++)

vect1.push_back (i);

vect2.resize(vect1.size());

transform (vect1.begin(), vect1.end(),

vect2.begin(), increase_int);

the two
libraries
required

(plus vector,
etc.)

Lecture 11_8.2 – Slide 102 Rel. 24/04/2016 © Savino, Sanchez - 2017

STL Algorithms: Advanced

...

#include <algorithm>

#include <functional>

int increase_int (int i) { return ++i; }
int main () {

std::vector<int> vect1, vect2;

for (int i=1; i<6; i++)

vect1.push_back (i);

vect2.resize(vect1.size());

transform (vect1.begin(), vect1.end(),

vect2.begin(), increase_int);

my custom
function to

increase an int
number

Lecture 11_8.2 – Slide 103 Rel. 24/04/2016 © Savino, Sanchez - 2017

STL Algorithms: Advanced

...

#include <algorithm>

#include <functional>

int increase_int (int i) { return ++i; }

int main () {

std::vector<int> vect1, vect2;

for (int i=1; i<6; i++)

vect1.push_back (i);

vect2.resize(vect1.size());
transform (vect1.begin(), vect1.end(),

vect2.begin(), increase_int);

Resize the
second vector
about the size
of the first one
so they match

in size!

Lecture 11_8.2 – Slide 104 Rel. 24/04/2016 © Savino, Sanchez - 2017

STL Algorithms: Advanced

...

#include <algorithm>

#include <functional>

int increase_int (int i) { return ++i; }

int main () {

std::vector<int> vect1, vect2;

for (int i=1; i<6; i++)

vect1.push_back (i);

vect2.resize(vect1.size());

transform (vect1.begin(), vect1.end(),
vect2.begin(), increase_int);

template <class InputIterator, class OutputIterator,
class UnaryOperation>

OutputIterator transform (InputIterator first1,
InputIterator last1,
OutputIterator result,
UnaryOperation op);

Lecture 11_8.2 – Slide 105 Rel. 24/04/2016 © Savino, Sanchez - 2017

STL Algorithms: Advanced

...

#include <algorithm>

#include <functional>

int increase_int (int i) { return ++i; }

int main () {

std::vector<int> vect1, vect2;

for (int i=1; i<6; i++)

vect1.push_back (i);

vect2.resize(vect1.size());

transform (vect1.begin(), vect1.end(),
vect2.begin(), increase_int);

The point is transforming vect1 but saving the
transformation in vect2.

The transformation operation is provided by the last
parameter (which is a function)

Lecture 11_8.2 – Slide 106 Rel. 24/04/2016 © Savino, Sanchez - 2017

STL Algorithms: Advanced

transform (vect1.begin(), vect1.end(),

vect2.begin(), vect1.begin(),
plus<int>());

cout << ”Vect1 now contains:";

for (vector<int>::iterator it=vect1.begin();
it!=vect1.end();

++it)

std::cout << ' ' << *it;

std::cout << endl;

return 0;

}

Lecture 11_8.2 – Slide 107 Rel. 24/04/2016 © Savino, Sanchez - 2017

STL Algorithms: Advanced

transform (vect1.begin(), vect1.end(),
vect2.begin(), vect1.begin(),
plus<int>());

cout << ”Vect1 now contains:";

for (vector<int>::iterator it=vect1.begin();
it!=foo.end();

++it)

std::cout << ' ' << *it;

std::cout << endl;

return 0;

}

template <class InputIterator1, class InputIterator2,
class OutputIterator, class BinaryOperation>

OutputIterator transform (InputIterator1 first1,
InputIterator1 last1,
InputIterator2 first2,
OutputIterator result,
BinaryOperation binary_op);

Lecture 11_8.2 – Slide 108 Rel. 24/04/2016 © Savino, Sanchez - 2017

STL Algorithms: Advanced

transform (vect1.begin(), vect1.end(),
vect2.begin(), vect1.begin(),
plus<int>());

cout << ”Vect1 now contains:";

for (vector<int>::iterator it=vect1.begin();
it!=foo.end();

++it)

std::cout << ' ' << *it;

std::cout << endl;

return 0;

}

The point is transforming vect1 but, this time, the
overloaded function expect a second input (vect2)

and the output will be in vect1.
The transformation operation is provided by the last
parameter (which is a function object of the library

and requires a template specification)

Lecture 11_8.2 – Slide 109 Rel. 24/04/2016 © Savino, Sanchez - 2017

STL Algorithms: Advanced

transform (vect1.begin(), vect1.end(),

vect2.begin(), vect1.begin(),
plus<int>());

cout << ”Vect1 now contains:";

for (vector<int>::iterator it=vect1.begin();
it!=vect1.end();

++it)

std::cout << ' ' << *it;

std::cout << endl;

return 0;

}

Lecture 11_8.2 – Slide 110 Rel. 24/04/2016 © Savino, Sanchez - 2017

Малые Автюхи, Калинковичский район, Республики Беларусь

