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Disclaimer

• We disclaim any warranties or representations as 
to the accuracy or completeness of this material.

• Materials are provided “as is” without warranty of 
any kind, either express or implied, including 
without limitation, warranties of merchantability, 
fitness for a particular purpose, and non-
infringement. 

• Under no circumstances shall we be liable for any 
loss, damage, liability or expense incurred or 
suffered which is claimed to have resulted from 
use of this material. 
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Goal

– This lecture presents a global overviews of 
problems and issues related to dynamic 
memory allocation and pointers usage
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Prerequisites

– Basic knowledge of C programming language
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Homework

– None
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Outline

• Pointers Usage:
– Pointers and functions 
– Dynamic Memory
– Declare and Scan Arrays
– Dynamic Memory C++ style
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Outline

• Pointers Usage:
– Pointers and functions
– Dynamic Memory
– Declare and Scan Arrays
– Dynamic Memory C++ style
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Pointers and functions

• Passing pointers to functions
– Nonconstant pointer to nonconstant data
void f(int *ptr);

int main ()
{

int y=1, x=2;
int *ptr =&y;
f(ptr);
ptr = &x;
return 0;

}

void f(int *ptr){
*ptr = 20;

}
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Pointers and functions

• Passing pointers to functions
– Nonconstant pointer to constant data

void f(const int *ptr);

int main ()
{

int y=1, x=2;
int *ptr =&y;
f(ptr);
ptr = &x;
return 0;

}

void f(const int *ptr){
*ptr = 20; // ERROR assignment of read-only location

}
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Pointers and functions

• Passing pointers to functions
– Constant pointer to nonconstant data

void f(int *ptr);

int main ()
{

int x=1, y=2;
int * const ptr = &y;
f(ptr);
ptr = &x; //ERROR assignment of read-only location
return 0;

}

void f(int *ptr){
*ptr = 20;

}
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Pointers and functions

• Passing pointers to functions
– Constant pointer to constant data

void f(const int *ptr);

int main ()
{

int x=1, y=2;
int * const ptr = &y;
f(ptr);
ptr = &x; //ERROR assignment of read-only location
y=20;
return 0;

}

void f(const int *ptr){
*ptr = 20;//ERROR assignment of read-only location

}
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Pointers and functions

• Function pointers
– A pointer to a function contains the function 

address in memory
– The function name can be used as the function 

pointer
– A function pointer can be passed to other 

functions.
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Pointers and functions
#include <iostream>
using namespace std;

int f1(int val);
int f2(int val);
int f3(int val);
int call_f(int val, int (*funct)(int));

int main ()
{

int x=5;
cout << x << endl;
cout << call_f(x,f1) << endl;
cout << call_f(x,f2) << endl;
cout << call_f(x,f3) << endl;
return 0;

}
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Pointers and functions
#include <iostream>
using namespace std;

int f1(int val);
int f2(int val);
int f3(int val);
int call_f(int val, int (*funct)(int));

int main ()
{

int x=5;
cout << x << endl;
cout << call_f(x,f1) << endl;
cout << call_f(x,f2) << endl;
cout << call_f(x,f3) << endl;
return 0;

}

The function receives:
• an integer as first parameter
• a pointer to a function as a

second parameter
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Pointers and functions

int f1(int val){
return ++val;

}

int f2(int val){
return --val;

}

int f3(int val){
return val=0;

}

int call_f(int val, int (*funct)(int)){
return funct(val);

}
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Outline

• Pointers Usage:
– Pointers and functions
– Dynamic Memory
– Declare and Scan Arrays
– Dynamic Memory C++ style
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Dynamic Memory

• Dynamic memory allocation allows programmers to 
write code that requires an amount of memory that 
is NOT FIXED “a priori”

• The memory can be dynamically allocated or be  
freed during the program execution. 
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Dynamic Memory

• There are two scenarios in which dynamic memory 
allocation can be exploited:
1. The program is able to determine, at each 

execution, how much memory it needs
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1st Scenario

Allocated
memory

Main memory

The program needs a 
small amount of memory

Allocated
Memory

Main memory

The program needs a lot 
of memory
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1st Scenario

Allocated
memory

Main memory

The program needs a 
small amount of memory

Allocated
Memory

Main memory

The program needs a lot 
of memory

For each execution, the 
variables are sized 
accordingly to the 

memory needs
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Dynamic Memory

• There are two scenarios in which dynamic memory 
allocation can be exploited:
1. The program is able to determine, at each 

execution, how much memory it needs
2. During execution, the program needs a variable 

amount of memory
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How can we 
dynamically
allocate and 
deallocate
memory?
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Dynamic Memory Allocation

• The main function to allocate memory in C is:

void *malloc ( <memory_size> );

It asks the Operating System to:
• allocate a memory portion of bytes having size 

equal to <memory_size>
• return the pointer to the beginning of the 

allocated space.
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Dynamic Memory Allocation

• The main function to allocate memory in C is:

void *malloc ( <memory_size> );

It asks the Operating System to:
• allocate a memory portion of bytes having size 

equal to <memory_size>
• return the pointer to the beginning of the 

allocated space.

Check the return value against NULL!
In that case, an error during allocation 

arises, e.g., out of memory!
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malloc ( )

char *Aptr = NULL;
Aptr = (char*) malloc(10 * sizeof (char));

.

.

.

Memory
0
1

N-1
N
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malloc ( )

char *Aptr = NULL;
Aptr = (char*) malloc(10 * sizeof (char));
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malloc ( )

char *Aptr = NULL;
Aptr = (char*) malloc(10 * sizeof (char));
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malloc ( )

char *Aptr = NULL;
Aptr = (char*) malloc(10 * sizeof (char));
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Dynamic Memory Deallocation

• In C there are two main functions to dynamically 
deallocate memory:
– void* realloc (void* ptr, <memory_size>); 

It asks the Operating System to resize, 
accordingly to <memory_size>, the memory 

portion pointed by ptr, and returns the pointer 
to the beginning of the reallocated space
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realloc ( )

char *Aptr = NULL;
Aptr = (char*) malloc(10 * sizeof (char));
Aptr = (char*) realloc(Aptr, 2* sizeof (char));   
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char *Aptr = NULL;
Aptr = (char*) malloc(10 * sizeof (char));
Aptr = (char*) realloc(Aptr, 2* sizeof (char));   
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char *Aptr = NULL;
Aptr = (char*) malloc(10 * sizeof (char));
Aptr = (char*) realloc(Aptr, 2* sizeof (char));   
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char *Aptr = NULL;
Aptr = (char*) malloc(10 * sizeof (char));
Aptr = (char*) realloc(Aptr, 2* sizeof (char));
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Dynamic Memory Deallocation

• In C there are two main functions to dynamically 
deallocate memory:
– void* realloc (void* ptr, <memory_size>); 
– void free (void* ptr);

It asks the Operating System to deallocate the 
memory portion pointed by ptr
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free ( )

char *Aptr = NULL;
Aptr = (char*) malloc(10 * sizeof (char));
free(Aptr);   

.

.

.

Memory
0
1

N-1
N



Lecture 11_7.2 – Slide 39 Rel. 08/04/2016 © Savino, Sanchez - 2017

char *Aptr = NULL;
Aptr = (char*) malloc(10 * sizeof (char));
free(Aptr);   

free ( )
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free ( )
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free ( )
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Outline

• Pointers Usage:
– Pointers and functions
– Dynamic Memory
– Declare and Scan Arrays
– Dynamic Memory C++ style
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Declare and Scan Arrays with Pointers

• Pointers and arrays are almost interchangeable in C

int A[10] @ int *APtr
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Why only almost
interchangeable ?
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Pointers and Arrays - Difference

• Main difference:
– When declaring an array, size is specified and 

memory is allocated statically

int A[10];
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Pointers and Arrays – Difference (cnt’d)

• Main difference:
– When declaring an array, size is specified and 

memory is allocated statically

A[0]
.
.
.

A[9]
.
.
.

Memory
0

9

N

int A[10];

A
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Pointers and Arrays – Difference (cnt’d)

• Main difference:
– When declaring an array, size is specified and 

memory is allocated statically
– When declaring a pointer, no additional memory 

is initially allocated

Memory must be allocated 
exploiting the malloc()

function
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Declare and Scan Arrays with Pointers

• A pointer can be used to declare and to scan an 
array exploiting:
– Dynamic memory allocation
– Pointers arithmetic
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Declare and Scan Arrays with Pointers

char *Aptr = NULL;
Aptr = (char*)malloc(10*sizeof(char));
*Aptr = ‘A’;
Aptr = Aptr + 5;
*Aptr = ‘B’;
Aptr = Aptr - 4;
*Aptr = ‘C’;
*Aptr++ = ‘D’;

.

.

.
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Declare and Scan Arrays with Pointers

char *Aptr = NULL;
Aptr = (char*)malloc(10*sizeof(char));
*Aptr = ‘A’;
Aptr = Aptr + 5;
*Aptr = ‘B’;
Aptr = Aptr - 4;
*Aptr = ‘C’;
*Aptr++ = ‘D’;

.

.

.
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Declare and Scan Arrays with Pointers

.

.
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NULL

Memory
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Aptr

Current Statement:
char *Aptr = NULL;
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Declare and Scan Arrays with Pointers

char *Aptr = NULL;
Aptr = (char *)malloc(10*sizeof(char));
*Aptr = ‘A’;
Aptr = Aptr + 5;
*Aptr = ‘B’;
Aptr = Aptr - 4;
*Aptr = ‘C’;
*Aptr++ = ‘D’;

.

.

.
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Declare and Scan Arrays with Pointers
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Aptr

Current Statement:
Aptr = (char*)malloc(

10*sizeof (char));
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Declare and Scan Arrays with Pointers

char *Aptr = NULL;
Aptr = (char*)malloc(10*sizeof(char));
*Aptr = ‘A’;
Aptr = Aptr + 5;
*Aptr = ‘B’;
Aptr = Aptr - 4;
*Aptr = ‘C’;
*Aptr++ = ‘D’;

.

.

.
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Declare and Scan Arrays with Pointers

A
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Memory
0

9

N

Aptr

Current Statement:
*Aptr = ‘A’;
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Declare and Scan Arrays with Pointers

char *Aptr = NULL;
Aptr = (char*)malloc(10*sizeof(char));
*Aptr = ‘A’;
Aptr = Aptr + 5;
*Aptr = ‘B’;
Aptr = Aptr - 4;
*Aptr = ‘C’;
*Aptr++ = ‘D’;

.

.

.
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Declare and Scan Arrays with Pointers

A
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Memory
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N
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Aptr

Current Statement:
Aptr = Aptr + 5;
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Declare and Scan Arrays with Pointers

char *Aptr = NULL;
Aptr = (char*)malloc(10*sizeof(char));
*Aptr = ‘A’;
Aptr = Aptr + 5;
*Aptr = ‘B’;
Aptr = Aptr - 4;
*Aptr = ‘C’;
*Aptr++ = ‘D’;

.

.

.
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Declare and Scan Arrays with Pointers
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Current Statement:
*Aptr = ‘B’;

Aptr
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Declare and Scan Arrays with Pointers

char *Aptr = NULL;;
Aptr = (char*)malloc(10*sizeof(char));
*Aptr = ‘A’;
Aptr = Aptr + 5;
*Aptr = ‘B’;
Aptr = Aptr - 4;
*Aptr = ‘C’;
*Aptr++ = ‘D’;

.

.

.
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Declare and Scan Arrays with Pointers
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Declare and Scan Arrays with Pointers

char *Aptr = NULL;
Aptr = (char*)malloc(10*sizeof(char));
*Aptr = ‘A’;
Aptr = Aptr + 5;
*Aptr = ‘B’;
Aptr = Aptr - 4;
*Aptr = ‘C’;
*Aptr++ = ‘D’;

.

.

.
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Declare and Scan Arrays with Pointers

A
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Aptr

Current Statement:
*Aptr = ‘C’;
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Declare and Scan Arrays with Pointers

char *Aptr = NULL;
Aptr = (char*)malloc(10*sizeof(char));
*Aptr = ‘A’;
Aptr = Aptr + 5;
*Aptr = ‘B’;
Aptr = Aptr - 4;
*Aptr = ‘C’;
*Aptr++ = ‘D’;

.

.

.
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Declare and Scan Arrays with Pointers

A
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Current Statement:
*Aptr++ = ‘D’;
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Outline

• Pointers Usage:
– Pointers and functions
– Dynamic Memory
– Declare and Scan Arrays
– Dynamic Memory C++ style
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Dynamic Memory C++ style

• Dynamic memory management in C++ is performed 
with the operators new and delete.

int * intPtr = new int;
Vehicle * CarPtr = new Vehicle;

new operator:
• allocates an appropriate memory portion of 

bytes according to the involved type or object
• activates the class constructor 
• returns the pointer to the beginning of the 

allocated space or the new object
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Dynamic Memory C++ style

• Dynamic memory management in C++ is performed 
with the operators new and delete.

int * intPtr = new int(42);
Vehicle * CarPtr = new Vehicle(5,60,9);

new operator:

• initializes a variable or object accordingly.
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Dynamic Memory C++ style

• Dynamic memory management in C++ is performed 
with the operators new and delete.

delete intPtr;
delete CarPtr;

delete operator:
• destroys the allocated memory and frees the 

space.
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Dynamic Memory C++ style

• Dynamically allocating arrays

int * vectorPtr = new int[10];
delete [] vectorPtr;



Lecture 11_7.2 – Slide 71 Rel. 08/04/2016 © Savino, Sanchez - 2017

Dynamic Memory C++ style

• Dynamic allocation within classes?

class VectorInt {
...
private:
int * vectorPtr;

...
}
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Dynamic Memory C++ style

• Dynamic allocation within classes?

VectorInt::VectorInt() {
int * vectorPtr = new int[10];

}

VectorInt::~VectorInt() {
delete [] vectorPtr;

}
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Dynamic Memory C++ style

• Dynamic allocation within classes?

VectorInt::VectorInt() {
int * vectorPtr = new int[10];

}

VectorInt::~VectorInt() {
delete [] vectorPtr;

}

Do you see any forthcoming issues?
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Dynamic Memory C++ style

• Dynamic allocation within classes?

VectorInt::VectorInt() {
int * vectorPtr = new int[10];

}

VectorInt::~VectorInt() {
delete [] vectorPtr;

}

What if... the new operator is not able to 
allocate the memory?
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Dynamic Memory C++ style

• Dynamic allocation within classes?

VectorInt::VectorInt() {
int * vectorPtr = new int[10];

}

VectorInt::~VectorInt() {
delete [] vectorPtr;

}
Then try to limit usage of dynamic memory 

within classes and prefer it only in the 
program...
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