
Lecture
11_7.2 Pointer Usages &

Dynamic Memory

Alessandro SAVINO
Politecnico di Torino (Italy)
alessandro.savino@polito.it

www.testgroup.polito.it

Lecture 11_7.2 – Slide 2 Rel. 08/04/2016 © Savino, Sanchez - 2017

License Information

This work is licensed under the
Creative Commons BY-NC

License

To view a copy of the license, visit:
http://creativecommons.org/licenses/by-nc/3.0/legalcode

Lecture 11_7.2 – Slide 3 Rel. 08/04/2016 © Savino, Sanchez - 2017

Disclaimer

• We disclaim any warranties or representations as
to the accuracy or completeness of this material.

• Materials are provided “as is” without warranty of
any kind, either express or implied, including
without limitation, warranties of merchantability,
fitness for a particular purpose, and non-
infringement.

• Under no circumstances shall we be liable for any
loss, damage, liability or expense incurred or
suffered which is claimed to have resulted from
use of this material.

Lecture 11_7.2 – Slide 4 Rel. 08/04/2016 © Savino, Sanchez - 2017

Goal

– This lecture presents a global overviews of
problems and issues related to dynamic
memory allocation and pointers usage

Lecture 11_7.2 – Slide 5 Rel. 08/04/2016 © Savino, Sanchez - 2017

Prerequisites

– Basic knowledge of C programming language

Lecture 11_7.2 – Slide 6 Rel. 08/04/2016 © Savino, Sanchez - 2017

Homework

– None

Lecture 11_7.2 – Slide 7 Rel. 08/04/2016 © Savino, Sanchez - 2017

Outline

• Pointers Usage:
– Pointers and functions
– Dynamic Memory
– Declare and Scan Arrays
– Dynamic Memory C++ style

Lecture 11_7.2 – Slide 8 Rel. 08/04/2016 © Savino, Sanchez - 2017

Outline

• Pointers Usage:
– Pointers and functions
– Dynamic Memory
– Declare and Scan Arrays
– Dynamic Memory C++ style

Lecture 11_7.2 – Slide 9 Rel. 08/04/2016 © Savino, Sanchez - 2017

Pointers and functions

• Passing pointers to functions
– Nonconstant pointer to nonconstant data
void f(int *ptr);

int main ()
{

int y=1, x=2;
int *ptr =&y;
f(ptr);
ptr = &x;
return 0;

}

void f(int *ptr){
*ptr = 20;

}

Lecture 11_7.2 – Slide 10 Rel. 08/04/2016 © Savino, Sanchez - 2017

Pointers and functions

• Passing pointers to functions
– Nonconstant pointer to constant data

void f(const int *ptr);

int main ()
{

int y=1, x=2;
int *ptr =&y;
f(ptr);
ptr = &x;
return 0;

}

void f(const int *ptr){
*ptr = 20; // ERROR assignment of read-only location

}

Lecture 11_7.2 – Slide 11 Rel. 08/04/2016 © Savino, Sanchez - 2017

Pointers and functions

• Passing pointers to functions
– Constant pointer to nonconstant data

void f(int *ptr);

int main ()
{

int x=1, y=2;
int * const ptr = &y;
f(ptr);
ptr = &x; //ERROR assignment of read-only location
return 0;

}

void f(int *ptr){
*ptr = 20;

}

Lecture 11_7.2 – Slide 12 Rel. 08/04/2016 © Savino, Sanchez - 2017

Pointers and functions

• Passing pointers to functions
– Constant pointer to constant data

void f(const int *ptr);

int main ()
{

int x=1, y=2;
int * const ptr = &y;
f(ptr);
ptr = &x; //ERROR assignment of read-only location
y=20;
return 0;

}

void f(const int *ptr){
*ptr = 20;//ERROR assignment of read-only location

}

Lecture 11_7.2 – Slide 13 Rel. 08/04/2016 © Savino, Sanchez - 2017

Pointers and functions

• Function pointers
– A pointer to a function contains the function

address in memory
– The function name can be used as the function

pointer
– A function pointer can be passed to other

functions.

Lecture 11_7.2 – Slide 14 Rel. 08/04/2016 © Savino, Sanchez - 2017

Pointers and functions
#include <iostream>
using namespace std;

int f1(int val);
int f2(int val);
int f3(int val);
int call_f(int val, int (*funct)(int));

int main ()
{

int x=5;
cout << x << endl;
cout << call_f(x,f1) << endl;
cout << call_f(x,f2) << endl;
cout << call_f(x,f3) << endl;
return 0;

}

Lecture 11_7.2 – Slide 15 Rel. 08/04/2016 © Savino, Sanchez - 2017

Pointers and functions
#include <iostream>
using namespace std;

int f1(int val);
int f2(int val);
int f3(int val);
int call_f(int val, int (*funct)(int));

int main ()
{

int x=5;
cout << x << endl;
cout << call_f(x,f1) << endl;
cout << call_f(x,f2) << endl;
cout << call_f(x,f3) << endl;
return 0;

}

The function receives:
• an integer as first parameter
• a pointer to a function as a

second parameter

Lecture 11_7.2 – Slide 16 Rel. 08/04/2016 © Savino, Sanchez - 2017

Pointers and functions

int f1(int val){
return ++val;

}

int f2(int val){
return --val;

}

int f3(int val){
return val=0;

}

int call_f(int val, int (*funct)(int)){
return funct(val);

}

Lecture 11_7.2 – Slide 17 Rel. 08/04/2016 © Savino, Sanchez - 2017

Outline

• Pointers Usage:
– Pointers and functions
– Dynamic Memory
– Declare and Scan Arrays
– Dynamic Memory C++ style

Lecture 11_7.2 – Slide 18 Rel. 08/04/2016 © Savino, Sanchez - 2017

Dynamic Memory

• Dynamic memory allocation allows programmers to
write code that requires an amount of memory that
is NOT FIXED “a priori”

• The memory can be dynamically allocated or be
freed during the program execution.

Lecture 11_7.2 – Slide 19 Rel. 08/04/2016 © Savino, Sanchez - 2017

Dynamic Memory

• There are two scenarios in which dynamic memory
allocation can be exploited:
1. The program is able to determine, at each

execution, how much memory it needs

Lecture 11_7.2 – Slide 20 Rel. 08/04/2016 © Savino, Sanchez - 2017

1st Scenario

Allocated
memory

Main memory

The program needs a
small amount of memory

Allocated
Memory

Main memory

The program needs a lot
of memory

Lecture 11_7.2 – Slide 21 Rel. 08/04/2016 © Savino, Sanchez - 2017

1st Scenario

Allocated
memory

Main memory

The program needs a
small amount of memory

Allocated
Memory

Main memory

The program needs a lot
of memory

For each execution, the
variables are sized
accordingly to the

memory needs

Lecture 11_7.2 – Slide 22 Rel. 08/04/2016 © Savino, Sanchez - 2017

Dynamic Memory

• There are two scenarios in which dynamic memory
allocation can be exploited:
1. The program is able to determine, at each

execution, how much memory it needs
2. During execution, the program needs a variable

amount of memory

Lecture 11_7.2 – Slide 23 Rel. 08/04/2016 © Savino, Sanchez - 2017

2nd Scenario

t

Alloc.
Mem.

al
lo

ca
tio

n

de
al

lo
ca

tio
n

al
lo

ca
tio

n

de
al

lo
ca

tio
n

Alloc.
Mem.

In
iti

al
 a

llo
ca

tio
n

Alloc.
Mem. Alloc.

Mem.

Alloc.
Mem.

Lecture 11_7.2 – Slide 24 Rel. 08/04/2016 © Savino, Sanchez - 2017

2nd Scenario

t

Alloc.
Mem.

al
lo

ca
tio

n

de
al

lo
ca

tio
n

al
lo

ca
tio

n

de
al

lo
ca

tio
n

Alloc.
Mem.

In
iti

al
 a

llo
ca

tio
n

Alloc.
Mem. Alloc.

Mem.

Alloc.
Mem.During an execution, the

variables may/must be
resized according to the

actual memory needs

Lecture 11_7.2 – Slide 25 Rel. 08/04/2016 © Savino, Sanchez - 2017

How can we
dynamically
allocate and
deallocate
memory?

Lecture 11_7.2 – Slide 26 Rel. 08/04/2016 © Savino, Sanchez - 2017

Dynamic Memory Allocation

• The main function to allocate memory in C is:

void *malloc (<memory_size>);

It asks the Operating System to:
• allocate a memory portion of bytes having size

equal to <memory_size>
• return the pointer to the beginning of the

allocated space.

Lecture 11_7.2 – Slide 27 Rel. 08/04/2016 © Savino, Sanchez - 2017

Dynamic Memory Allocation

• The main function to allocate memory in C is:

void *malloc (<memory_size>);

It asks the Operating System to:
• allocate a memory portion of bytes having size

equal to <memory_size>
• return the pointer to the beginning of the

allocated space.

Check the return value against NULL!
In that case, an error during allocation

arises, e.g., out of memory!

Lecture 11_7.2 – Slide 28 Rel. 08/04/2016 © Savino, Sanchez - 2017

malloc ()

char *Aptr = NULL;
Aptr = (char*) malloc(10 * sizeof (char));

.

.

.

Memory
0
1

N-1
N

Lecture 11_7.2 – Slide 29 Rel. 08/04/2016 © Savino, Sanchez - 2017

malloc ()

char *Aptr = NULL;
Aptr = (char*) malloc(10 * sizeof (char));

.

.

.

NULL

Memory
0
1

N-1
N

Aptr

Lecture 11_7.2 – Slide 30 Rel. 08/04/2016 © Savino, Sanchez - 2017

malloc ()

char *Aptr = NULL;
Aptr = (char*) malloc(10 * sizeof (char));

.

.

.

.

.

.
NULL

Memory
0

9

N

Cells
allocated

with
malloc()

Aptr

Lecture 11_7.2 – Slide 31 Rel. 08/04/2016 © Savino, Sanchez - 2017

malloc ()

char *Aptr = NULL;
Aptr = (char*) malloc(10 * sizeof (char));

.

.

.

.

.

.
0

Memory
0

9

N

Cells
allocated

with
malloc()

Aptr

Lecture 11_7.2 – Slide 32 Rel. 08/04/2016 © Savino, Sanchez - 2017

Dynamic Memory Deallocation

• In C there are two main functions to dynamically
deallocate memory:
– void* realloc (void* ptr, <memory_size>);

It asks the Operating System to resize,
accordingly to <memory_size>, the memory

portion pointed by ptr, and returns the pointer
to the beginning of the reallocated space

Lecture 11_7.2 – Slide 33 Rel. 08/04/2016 © Savino, Sanchez - 2017

realloc ()

char *Aptr = NULL;
Aptr = (char*) malloc(10 * sizeof (char));
Aptr = (char*) realloc(Aptr, 2* sizeof (char));

.

.

.

Memory
0
1

N-1
N

Lecture 11_7.2 – Slide 34 Rel. 08/04/2016 © Savino, Sanchez - 2017

char *Aptr = NULL;
Aptr = (char*) malloc(10 * sizeof (char));
Aptr = (char*) realloc(Aptr, 2* sizeof (char));

realloc ()

.

.

.

NULL

Memory
0
1

N-1
N

Aptr

Lecture 11_7.2 – Slide 35 Rel. 08/04/2016 © Savino, Sanchez - 2017

char *Aptr = NULL;
Aptr = (char*) malloc(10 * sizeof (char));
Aptr = (char*) realloc(Aptr, 2* sizeof (char));

realloc ()

.

.

.

.

.

.
0

Memory
0

9

N

Cells
allocated

with
malloc()

Aptr

Lecture 11_7.2 – Slide 36 Rel. 08/04/2016 © Savino, Sanchez - 2017

char *Aptr = NULL;
Aptr = (char*) malloc(10 * sizeof (char));
Aptr = (char*) realloc(Aptr, 2* sizeof (char));

realloc ()

.

.

.

.

.

.

0

Memory
0

9

N

Allocated
Cells

Aptr

1
2 Cells

deallocated
by

realloc()

Lecture 11_7.2 – Slide 37 Rel. 08/04/2016 © Savino, Sanchez - 2017

Dynamic Memory Deallocation

• In C there are two main functions to dynamically
deallocate memory:
– void* realloc (void* ptr, <memory_size>);
– void free (void* ptr);

It asks the Operating System to deallocate the
memory portion pointed by ptr

Lecture 11_7.2 – Slide 38 Rel. 08/04/2016 © Savino, Sanchez - 2017

free ()

char *Aptr = NULL;
Aptr = (char*) malloc(10 * sizeof (char));
free(Aptr);

.

.

.

Memory
0
1

N-1
N

Lecture 11_7.2 – Slide 39 Rel. 08/04/2016 © Savino, Sanchez - 2017

char *Aptr = NULL;
Aptr = (char*) malloc(10 * sizeof (char));
free(Aptr);

free ()

.

.

.

NULL

Memory
0
1

N-1
N

Aptr

Lecture 11_7.2 – Slide 40 Rel. 08/04/2016 © Savino, Sanchez - 2017

free ()

.

.

.

.

.

.
0

Memory
0

9

N

Cells
allocated

with
malloc()

Aptr

char *Aptr = NULL;
Aptr = (char*) malloc(10 * sizeof (char));
free(Aptr);

Lecture 11_7.2 – Slide 41 Rel. 08/04/2016 © Savino, Sanchez - 2017

free ()

char *Aptr = NULL;
Aptr = (char*) malloc(10 * sizeof (char));
free(Aptr);

.

.

.

.

.

.
???????

Memory
0

9

N

Cells
deallocated

by
free()

Aptr

Lecture 11_7.2 – Slide 42 Rel. 08/04/2016 © Savino, Sanchez - 2017

Outline

• Pointers Usage:
– Pointers and functions
– Dynamic Memory
– Declare and Scan Arrays
– Dynamic Memory C++ style

Lecture 11_7.2 – Slide 43 Rel. 08/04/2016 © Savino, Sanchez - 2017

Declare and Scan Arrays with Pointers

• Pointers and arrays are almost interchangeable in C

int A[10] @ int *APtr

Lecture 11_7.2 – Slide 44 Rel. 08/04/2016 © Savino, Sanchez - 2017

Why only almost
interchangeable ?

Lecture 11_7.2 – Slide 45 Rel. 08/04/2016 © Savino, Sanchez - 2017

Pointers and Arrays - Difference

• Main difference:
– When declaring an array, size is specified and

memory is allocated statically

int A[10];

Lecture 11_7.2 – Slide 46 Rel. 08/04/2016 © Savino, Sanchez - 2017

Pointers and Arrays – Difference (cnt’d)

• Main difference:
– When declaring an array, size is specified and

memory is allocated statically

A[0]
.
.
.

A[9]
.
.
.

Memory
0

9

N

int A[10];

A

Lecture 11_7.2 – Slide 47 Rel. 08/04/2016 © Savino, Sanchez - 2017

Pointers and Arrays – Difference (cnt’d)

• Main difference:
– When declaring an array, size is specified and

memory is allocated statically
– When declaring a pointer, no additional memory

is initially allocated

Memory must be allocated
exploiting the malloc()

function

Lecture 11_7.2 – Slide 48 Rel. 08/04/2016 © Savino, Sanchez - 2017

Declare and Scan Arrays with Pointers

• A pointer can be used to declare and to scan an
array exploiting:
– Dynamic memory allocation
– Pointers arithmetic

Lecture 11_7.2 – Slide 49 Rel. 08/04/2016 © Savino, Sanchez - 2017

Declare and Scan Arrays with Pointers

char *Aptr = NULL;
Aptr = (char*)malloc(10*sizeof(char));
*Aptr = ‘A’;
Aptr = Aptr + 5;
*Aptr = ‘B’;
Aptr = Aptr - 4;
*Aptr = ‘C’;
*Aptr++ = ‘D’;

.

.

.

Lecture 11_7.2 – Slide 50 Rel. 08/04/2016 © Savino, Sanchez - 2017

Declare and Scan Arrays with Pointers

char *Aptr = NULL;
Aptr = (char*)malloc(10*sizeof(char));
*Aptr = ‘A’;
Aptr = Aptr + 5;
*Aptr = ‘B’;
Aptr = Aptr - 4;
*Aptr = ‘C’;
*Aptr++ = ‘D’;

.

.

.

Lecture 11_7.2 – Slide 51 Rel. 08/04/2016 © Savino, Sanchez - 2017

Declare and Scan Arrays with Pointers

.

.

.

NULL

Memory
0
1

N-1
N

Aptr

Current Statement:
char *Aptr = NULL;

Lecture 11_7.2 – Slide 52 Rel. 08/04/2016 © Savino, Sanchez - 2017

Declare and Scan Arrays with Pointers

char *Aptr = NULL;
Aptr = (char *)malloc(10*sizeof(char));
*Aptr = ‘A’;
Aptr = Aptr + 5;
*Aptr = ‘B’;
Aptr = Aptr - 4;
*Aptr = ‘C’;
*Aptr++ = ‘D’;

.

.

.

Lecture 11_7.2 – Slide 53 Rel. 08/04/2016 © Savino, Sanchez - 2017

Declare and Scan Arrays with Pointers

.

.

.

.

.

.
0

Memory
0

9

N

Aptr

Current Statement:
Aptr = (char*)malloc(

10*sizeof (char));

Lecture 11_7.2 – Slide 54 Rel. 08/04/2016 © Savino, Sanchez - 2017

Declare and Scan Arrays with Pointers

char *Aptr = NULL;
Aptr = (char*)malloc(10*sizeof(char));
*Aptr = ‘A’;
Aptr = Aptr + 5;
*Aptr = ‘B’;
Aptr = Aptr - 4;
*Aptr = ‘C’;
*Aptr++ = ‘D’;

.

.

.

Lecture 11_7.2 – Slide 55 Rel. 08/04/2016 © Savino, Sanchez - 2017

Declare and Scan Arrays with Pointers

A
.
.
.

.

.

.
0

Memory
0

9

N

Aptr

Current Statement:
*Aptr = ‘A’;

Lecture 11_7.2 – Slide 56 Rel. 08/04/2016 © Savino, Sanchez - 2017

Declare and Scan Arrays with Pointers

char *Aptr = NULL;
Aptr = (char*)malloc(10*sizeof(char));
*Aptr = ‘A’;
Aptr = Aptr + 5;
*Aptr = ‘B’;
Aptr = Aptr - 4;
*Aptr = ‘C’;
*Aptr++ = ‘D’;

.

.

.

Lecture 11_7.2 – Slide 57 Rel. 08/04/2016 © Savino, Sanchez - 2017

Declare and Scan Arrays with Pointers

A
.
.

.

.

.

.

.
5

Memory
0

9

N

5

Aptr

Current Statement:
Aptr = Aptr + 5;

Lecture 11_7.2 – Slide 58 Rel. 08/04/2016 © Savino, Sanchez - 2017

Declare and Scan Arrays with Pointers

char *Aptr = NULL;
Aptr = (char*)malloc(10*sizeof(char));
*Aptr = ‘A’;
Aptr = Aptr + 5;
*Aptr = ‘B’;
Aptr = Aptr - 4;
*Aptr = ‘C’;
*Aptr++ = ‘D’;

.

.

.

Lecture 11_7.2 – Slide 59 Rel. 08/04/2016 © Savino, Sanchez - 2017

Declare and Scan Arrays with Pointers

A
.
.

B
.
.

.

.

.
5

Memory
0

9

N

5

Current Statement:
*Aptr = ‘B’;

Aptr

Lecture 11_7.2 – Slide 60 Rel. 08/04/2016 © Savino, Sanchez - 2017

Declare and Scan Arrays with Pointers

char *Aptr = NULL;;
Aptr = (char*)malloc(10*sizeof(char));
*Aptr = ‘A’;
Aptr = Aptr + 5;
*Aptr = ‘B’;
Aptr = Aptr - 4;
*Aptr = ‘C’;
*Aptr++ = ‘D’;

.

.

.

Lecture 11_7.2 – Slide 61 Rel. 08/04/2016 © Savino, Sanchez - 2017

Declare and Scan Arrays with Pointers

A

.

.

B
.
.

.

.

.
1

Memory
0

9

N

5

1Current Statement:
Aptr = Aptr - 4;

Aptr

Lecture 11_7.2 – Slide 62 Rel. 08/04/2016 © Savino, Sanchez - 2017

Declare and Scan Arrays with Pointers

char *Aptr = NULL;
Aptr = (char*)malloc(10*sizeof(char));
*Aptr = ‘A’;
Aptr = Aptr + 5;
*Aptr = ‘B’;
Aptr = Aptr - 4;
*Aptr = ‘C’;
*Aptr++ = ‘D’;

.

.

.

Lecture 11_7.2 – Slide 63 Rel. 08/04/2016 © Savino, Sanchez - 2017

Declare and Scan Arrays with Pointers

A
C
.
.

B
.
.

.

.

.
1

Memory
0

9

N

5

1

Aptr

Current Statement:
*Aptr = ‘C’;

Lecture 11_7.2 – Slide 64 Rel. 08/04/2016 © Savino, Sanchez - 2017

Declare and Scan Arrays with Pointers

char *Aptr = NULL;
Aptr = (char*)malloc(10*sizeof(char));
*Aptr = ‘A’;
Aptr = Aptr + 5;
*Aptr = ‘B’;
Aptr = Aptr - 4;
*Aptr = ‘C’;
*Aptr++ = ‘D’;

.

.

.

Lecture 11_7.2 – Slide 65 Rel. 08/04/2016 © Savino, Sanchez - 2017

Declare and Scan Arrays with Pointers

A
C
D
.
.

.

.

B
.
.
.
2

Memory

0

9

N

5

1
2

Aptr

Current Statement:
*Aptr++ = ‘D’;

Lecture 11_7.2 – Slide 66 Rel. 08/04/2016 © Savino, Sanchez - 2017

Outline

• Pointers Usage:
– Pointers and functions
– Dynamic Memory
– Declare and Scan Arrays
– Dynamic Memory C++ style

Lecture 11_7.2 – Slide 67 Rel. 08/04/2016 © Savino, Sanchez - 2017

Dynamic Memory C++ style

• Dynamic memory management in C++ is performed
with the operators new and delete.

int * intPtr = new int;
Vehicle * CarPtr = new Vehicle;

new operator:
• allocates an appropriate memory portion of

bytes according to the involved type or object
• activates the class constructor
• returns the pointer to the beginning of the

allocated space or the new object

Lecture 11_7.2 – Slide 68 Rel. 08/04/2016 © Savino, Sanchez - 2017

Dynamic Memory C++ style

• Dynamic memory management in C++ is performed
with the operators new and delete.

int * intPtr = new int(42);
Vehicle * CarPtr = new Vehicle(5,60,9);

new operator:

• initializes a variable or object accordingly.

Lecture 11_7.2 – Slide 69 Rel. 08/04/2016 © Savino, Sanchez - 2017

Dynamic Memory C++ style

• Dynamic memory management in C++ is performed
with the operators new and delete.

delete intPtr;
delete CarPtr;

delete operator:
• destroys the allocated memory and frees the

space.

Lecture 11_7.2 – Slide 70 Rel. 08/04/2016 © Savino, Sanchez - 2017

Dynamic Memory C++ style

• Dynamically allocating arrays

int * vectorPtr = new int[10];
delete [] vectorPtr;

Lecture 11_7.2 – Slide 71 Rel. 08/04/2016 © Savino, Sanchez - 2017

Dynamic Memory C++ style

• Dynamic allocation within classes?

class VectorInt {
...
private:
int * vectorPtr;

...
}

Lecture 11_7.2 – Slide 72 Rel. 08/04/2016 © Savino, Sanchez - 2017

Dynamic Memory C++ style

• Dynamic allocation within classes?

VectorInt::VectorInt() {
int * vectorPtr = new int[10];

}

VectorInt::~VectorInt() {
delete [] vectorPtr;

}

Lecture 11_7.2 – Slide 73 Rel. 08/04/2016 © Savino, Sanchez - 2017

Dynamic Memory C++ style

• Dynamic allocation within classes?

VectorInt::VectorInt() {
int * vectorPtr = new int[10];

}

VectorInt::~VectorInt() {
delete [] vectorPtr;

}

Do you see any forthcoming issues?

Lecture 11_7.2 – Slide 74 Rel. 08/04/2016 © Savino, Sanchez - 2017

Dynamic Memory C++ style

• Dynamic allocation within classes?

VectorInt::VectorInt() {
int * vectorPtr = new int[10];

}

VectorInt::~VectorInt() {
delete [] vectorPtr;

}

What if... the new operator is not able to
allocate the memory?

Lecture 11_7.2 – Slide 75 Rel. 08/04/2016 © Savino, Sanchez - 2017

Dynamic Memory C++ style

• Dynamic allocation within classes?

VectorInt::VectorInt() {
int * vectorPtr = new int[10];

}

VectorInt::~VectorInt() {
delete [] vectorPtr;

}
Then try to limit usage of dynamic memory

within classes and prefer it only in the
program...

Lecture 11_7.2 – Slide 76 Rel. 08/04/2016 © Savino, Sanchez - 2017

Малые Автюхи, Калинковичский район, Республики Беларусь

