
Lecture
11_7.1 Pointers

Alessandro SAVINO
Politecnico di Torino (Italy)
alessandro.savino@polito.it

www.testgroup.polito.it

http://www.testgroup.polito.it/

Lecture 11_7.1 - Slide 2 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

License Information

This work is licensed under the
Creative Commons BY-NC

License

To view a copy of the license, visit:
http://creativecommons.org/licenses/by-nc/3.0/legalcode

Lecture 11_7.1 - Slide 3 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Disclaimer

• We disclaim any warranties or representations as
to the accuracy or completeness of this material.

• Materials are provided “as is” without warranty of
any kind, either express or implied, including
without limitation, warranties of merchantability,
fitness for a particular purpose, and non-
infringement.

• Under no circumstances shall we be liable for any
loss, damage, liability or expense incurred or
suffered which is claimed to have resulted from
use of this material.

Lecture 11_7.1 - Slide 4 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Goal

– This lecture presents a global overviews of
problems and issues related to dynamic
memory allocation and pointers usage

Lecture 11_7.1 - Slide 5 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Prerequisites

– Basic knowledge of C programming language

Lecture 11_7.1 - Slide 6 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Homework

– None

Lecture 11_7.1 - Slide 7 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Outline

• Pointers:
– Definition
– Initialization
– Operators
– Variable Reference
– Pointers Arithmetic’s

Lecture 11_7.1 - Slide 8 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Outline

• Pointers:
– Definition
– Initialization
– Operators
– Variable Reference
– Pointers Arithmetic’s

Lecture 11_7.1 - Slide 9 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Pointers - Definition

• A pointers is a variable containing a memory
address

.

.

.

0x04

Memory

0x04

N-1
N

Pointer

0x00

Lecture 11_7.1 - Slide 10 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Pointers - Definition (cnt’d)

• While defining a pointer, it requires to use the *
special character

Lecture 11_7.1 - Slide 11 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Pointers – Definition (cnt’d)

• Example of pointer definition:
– int *p;

p holds memory
address of an integer

variable

Lecture 11_7.1 - Slide 12 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Pointers – Definition (cnt’d)

• Example of pointer definition:
– int *p;
– char *p;

p holds memory
address of char

variable

Lecture 11_7.1 - Slide 13 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Pointers – Definition (cnt’d)

• Example of pointer definition:
– int *p;
– char *p;
– double *p;

p holds memory
address of double

variable

Lecture 11_7.1 - Slide 14 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Pointers – Definition (cnt’d)

• Example of pointer definition:
– int *p;
– char *p;
– double *p;
– void *p;

p holds generic
memory address

Lecture 11_7.1 - Slide 15 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Pointers – Definition (cnt’d)

• Example of pointer definition:
– int *p;
– char *p;
– double *p;
– void *p;

Each pointer contains a
memory address

Lecture 11_7.1 - Slide 16 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Pointers – Definition (cnt’d)

• Example of pointer definition:
– int *p;
– char *p;
– double *p;
– void *p;

Each pointer contains a
memory address

All pointers have the same
size regardless what they

point to !!!

Lecture 11_7.1 - Slide 17 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Why do we need
to specify the
pointer type?

Lecture 11_7.1 - Slide 18 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

We need to know what type of
variable we are going to get

when we dereference
(i.e., use) the pointer

Lecture 11_7.1 - Slide 19 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Implicit conversions are illegal!

int *p;
double f;

p = &f; //ERROR

Lecture 11_7.1 - Slide 20 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Pointers – Definition (cnt’d)

• Multiple pointers definition require a * before each
variable definition:
– int *p, *p1, *x, **y;

Lecture 11_7.1 - Slide 21 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Pointers – Definition (cnt’d)

• Multiple pointers definition require a * before each
variable definition:
– int *p, *p1, *x, **y;

int *x;

int **y;

double *z;

x some int

some *int some inty

z some double

Lecture 11_7.1 - Slide 22 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Outline

• Pointers:
– Definition
– Initialization
– Operators
– Variable Reference
– Pointers Arithmetic’s

Lecture 11_7.1 - Slide 23 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Pointers – Initialization

• A pointer can be initialized to:
– 0
– NULL / nullptr
– an address

Lecture 11_7.1 - Slide 24 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Pointers – Initialization (cnt’d)

• A pointer can be initialized to:
– 0
– NULL / nullptr
– an address

The pointer points to
nothing

.

.

.

NULL

Memory

N-1
N

int *p = NULL

p

0x00
0x04

Lecture 11_7.1 - Slide 25 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Pointers – Initialization (cnt’d)

• A pointer can be initialized to:
– 0
– NULL
– an address

The pointer points to
an address

.

.

.

0x04

Memory
0x00
0x04

N-1
N

int *p = 0x04

p

Lecture 11_7.1 - Slide 26 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Pointers – Initialization (cnt’d)

• A pointer can be initialized to:
– 0
– NULL
– an address

The pointer points to
an address

.

.

.

0x04

Memory
0x00
0x04

N-1
N

int *p = 0x04

p

It is NOT recommended the
usage of this technique !!!

Lecture 11_7.1 - Slide 27 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Outline

• Pointers:
– Definition
– Initialization
– Operators
– Variable Reference
– Pointers Arithmetic’s

Lecture 11_7.1 - Slide 28 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Pointers – Operators

• Two operators can be used with pointers:
– &
– *

Lecture 11_7.1 - Slide 29 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Pointers – & Operator

• The & operator is called the reference operator
• It returns the address of an operand.

Lecture 11_7.1 - Slide 30 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Pointers – & Operator

• The & operator is called the reference operator
• It returns the address of an operand.

10

.

.

.

Memory
0x00
0x04

N-1
N

int a = 10

Lecture 11_7.1 - Slide 31 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Pointers – & Operator

• The & operator is called the reference operator
• It returns the address of an operand.

10

.

.

.

NULL

Memory

N-1
N

a

int *p = NULL;

0x00
0x04

Lecture 11_7.1 - Slide 32 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Pointers – & Operator

• The & operator is called the reference operator
• It returns the address of an operand.

10

.

.

.

0x04

Memory

N-1
N

a

p

p = &a;

0x00
0x04

Lecture 11_7.1 - Slide 33 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Pointers – & Operator

• The & operator is called the reference operator
• It returns the address of an operand.

&p returns N-1

10

0x04

Memory

N-1
N

a

p

0x00
0x04

Lecture 11_7.1 - Slide 34 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Pointers – * Operator

• The * operator is called the indirection or
dereferencing operator

• Returns the value of the object pointed by the
pointer

Lecture 11_7.1 - Slide 35 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Pointers – * Operator

• The * operator is called the indirection or
dereferencing operator

• Returns the value of the object pointed by the
pointer

10

.

.

.

0x04

Memory

N-1
N

a

p

0x00
0x04

Lecture 11_7.1 - Slide 36 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Pointers – * Operator

• The * operator is called the indirection or
dereferencing operator

• Returns the value of the object pointed by the
pointer

*p returns 10

10

.

.

.

0x04

Memory

N-1
N

a

p

0x00
0x04

Lecture 11_7.1 - Slide 37 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Pointers – Operators Example

int x = 1;
int y = 2;

int *ip; /*ip is a pointer to int */

ip = &x; /*ip now points to x*/

y = *ip; /*y is now 1*/

*ip = 0; /*x is now 0 */

Lecture 11_7.1 - Slide 38 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Pointers – Operators

• The * and the & are inverse: they cancel each other

Lecture 11_7.1 - Slide 39 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Pointers – Operators

• The * and the & are inverse: they cancel each other

&p return N-1
*p return 10

10

0x04

Memory
0x00
0x04

N-1
N

a

p

Lecture 11_7.1 - Slide 40 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Pointers – Operators

10

0x04

Memory

N-1
N

a

p

&*p

• The * and the & are inverse: they cancel each other

0x00
0x04

Lecture 11_7.1 - Slide 41 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Pointers – Operators

10

0x04

Memory

N-1
N

a

p

&*p º &(*p)

• The * and the & are inverse: they cancel each other

0x00
0x04

Lecture 11_7.1 - Slide 42 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Pointers – Operators

10

0x04

Memory

N-1
N

a

p

&*p º &(*p)
1. *p :

returns the content
of cell pointed by p
(i.e., the variable a)

• The * and the & are inverse: they cancel each other

0x00
0x04

Lecture 11_7.1 - Slide 43 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Pointers – Operators

10

0x04

Memory

N-1
N

a

p

&*p º &(*p)
1. *p º a

• The * and the & are inverse: they cancel each other

0x00
0x04

Lecture 11_7.1 - Slide 44 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Pointers – Operators

10

0x04

Memory

N-1
N

a

p

&*p º &(*p) º &(a)
1. *p º a

• The * and the & are inverse: they cancel each other

0x00
0x04

Lecture 11_7.1 - Slide 45 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Pointers – Operators

10

0x04

Memory

N-1
N

a

p

&*p º &(*p) º &(a)
1. *p º a
2. &(a):

returns the
address of the
variable a

• The * and the & are inverse: they cancel each other

0x00
0x04

Lecture 11_7.1 - Slide 46 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Pointers – Operators

10

0x04

Memory

N-1
N

a

p

&*p º &(*p) º &(a)
1. *p º a
2. &(a) º 0x04

• The * and the & are inverse: they cancel each other

0x00
0x04

Lecture 11_7.1 - Slide 47 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Pointers – Operators

10

0x04

Memory

N-1
N

a

p

&*p º &(*p) º &(a) º
0x04

1. *p º a
2. &(a) º 0x04

• The * and the & are inverse: they cancel each other

0x00
0x04

Lecture 11_7.1 - Slide 48 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Pointers – Operators

10

0x04

Memory

N-1
N

a

p

*&p

• The * and the & are inverse: they cancel each other

0x00
0x04

Lecture 11_7.1 - Slide 49 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Pointers – Operators

10

0x04

Memory

N-1
N

a

p

*&p º *(&p)

• The * and the & are inverse: they cancel each other

0x00
0x04

Lecture 11_7.1 - Slide 50 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Pointers – Operators

10

0x04

Memory

N-1
N

a

p

*&p º *(&p)
1. &p :

returns the address
of the pointer p
(i.e., N-1)

• The * and the & are inverse: they cancel each other

0x00
0x04

Lecture 11_7.1 - Slide 51 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Pointers – Operators

10

0x04

Memory

N-1
N

a

p

*&p º *(&p)
1. &p º N-1

• The * and the & are inverse: they cancel each other

0x00
0x04

Lecture 11_7.1 - Slide 52 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Pointers – Operators

10

0x04

Memory

N-1
N

a

p

*&p º *(&p) º *(N-1)
1. &p º N-1

• The * and the & are inverse: they cancel each other

0x00
0x04

Lecture 11_7.1 - Slide 53 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Pointers – Operators

10

0x04

Memory

N-1
N

a

p

*&p º *(&p) º *(N-1)
1. &p º N-1
2. *(N-1):

returns the content
of the cell at the
N-1 address

• The * and the & are inverse: they cancel each other

0x00
0x04

Lecture 11_7.1 - Slide 54 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Pointers – Operators

10

0x04

Memory

N-1
N

a

p

*&p º *(&p) º *(N-1)
1. &p º N-1
2. *(N-1) º0x04

• The * and the & are inverse: they cancel each other

0x00
0x04

Lecture 11_7.1 - Slide 55 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Pointers – Operators

10

0x04

Memory

N-1
N

a

p

*&p º *(&p) º *(N-1) º
0x04

1. &p º N-1
2. *(N-1) º0x04

• The * and the & are inverse: they cancel each other

0x00
0x04

Lecture 11_7.1 - Slide 56 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Pointers – Operators

10

0x04

Memory

N-1
N

a

p

*&p º 0x04
&*p º 0x04

• The * and the & are inverse: they cancel each other

0x00
0x04

Lecture 11_7.1 - Slide 57 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Pointers – Operators

10

0x04

Memory

N-1
N

a

p

*&p º 0x04
&*p º 0x04

*&p º &*p

• The * and the & are inverse: they cancel each other

0x00
0x04

Lecture 11_7.1 - Slide 58 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Outline

• Pointers:
– Definition
– Initialization
– Operators
– Variable Reference
– Pointers Arithmetic’s

Lecture 11_7.1 - Slide 59 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

How to reference a variable

• There are two ways to use (i.e., reference) a
variable:
– Direct Variable Reference
– Indirect Variable Reference

Lecture 11_7.1 - Slide 60 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

int a;
…
a=10;

Direct Variable Reference

• Direct reference to a variable:

Main memory

Lecture 11_7.1 - Slide 61 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

int a;
…
a=10;

Direct Variable Reference (cnt’d)

• Direct reference to a variable:

Main memory

a

Variable a is
allocate in the
main memory

Lecture 11_7.1 - Slide 62 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

int a;
…
a=10;

Direct Variable Reference

• Direct reference to a variable:

Main memory

a =10

10 is written in
the memory

location
associated to a

Lecture 11_7.1 - Slide 63 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

int a;
int *p;
…
p = &a;
*p = 10;

Indirect Variable Reference

• Indirect reference to a variable :

Main memory

Lecture 11_7.1 - Slide 64 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

int a;
int *p;
…
p = &a;
*p = 10;

Indirect Variable Reference (cnt’d)

• Indirect reference to a variable:

Main memory

a

Variable a is
allocate in the
main memory

Lecture 11_7.1 - Slide 65 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

int a;
int *p;
…
p = &a;
*p = 10;

Indirect Variable Reference (cnt’d)

• Indirect reference to a variable:

Main memory

a

p

Pointer p is
allocate in the
main memory

Lecture 11_7.1 - Slide 66 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

int a;
int *p;
…
p = &a;
*p = 10;

Indirect Variable Reference (cnt’d)

• Indirect reference to a variable:

Main memory

a

p =
addr(a)

The address of
a is assigned to

the pointer p

Lecture 11_7.1 - Slide 67 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Indirect Variable Reference (cnt’d)

• Indirect reference to a variable:

Main memory

a = 10

p =
addr(a) 10 is written in

the memory
location

associated to a
through the

pointer p

int a;
int *p;
…
p = &a;
*p = 10;

Lecture 11_7.1 - Slide 68 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Outline

• Pointers:
– Definition
– Initialization
– Operators
– Variable Reference
– Pointers Arithmetic’s

Lecture 11_7.1 - Slide 69 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Pointers Arithmetic

• The pointer arithmetic includes Increment and
Decrement operations, only

Lecture 11_7.1 - Slide 70 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Using Pointers to scan Arrays

• The pointer arithmetic includes Increment and
Decrement operations, only

• Examples:
– p = p + 5;
– p = p – 10;
– p++;

If p is a pointer to an integer,
after this instruction

p will point to 5 “integers”
after p

Lecture 11_7.1 - Slide 71 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

If p is a pointer to an integer,
after this instruction

p will point to 5 “integers”
after p

Using Pointers to scan Arrays

• The pointer arithmetic includes Increment and
Decrement operations, only

• Examples:
– p = p + 5;
– p = p – 10;
– p++;

The ACTUAL
increment depends on

the SIZE of the
pointed data

Lecture 11_7.1 - Slide 72 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Pointers Arithmetic's – Examples

10

.

.

.

Memory
0x0
0x4

N-1

N

a

int a = 10;
int *p = NULL;

p = &a;
p = p + 3;
p = p – 2;
p++;
p--;

0x8
0xC

0x10

Lecture 11_7.1 - Slide 73 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Pointers Arithmetic's – Examples

10

.

.

.

NULL

Memory
0x0
0x4

N-1

N

a

0x8
0xC

0x10

int a = 10;
int *p = NULL;

p = &a;
p = p + 3;
p = p – 2;
p++;
p--; p

Lecture 11_7.1 - Slide 74 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Pointers Arithmetic's – Examples

10

.

.

.

0x4

Memory
0x0
0x4

N-1

N

a

0x8
0xC

0x10

p

int a = 10;
int *p = NULL;

p = &a;
p = p + 3;
p = p – 2;
p++;
p--;

Lecture 11_7.1 - Slide 75 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Pointers Arithmetic's – Examples

10

.

.

.

0x10

Memory
0x0
0x4

N-1

N

a

0x8
0xC

0x10

p

int a = 10;
int *p = NULL;

p = &a;
p = p + 3;
p = p – 2;
p++;
p--;

Lecture 11_7.1 - Slide 76 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Pointers Arithmetic's – Examples

10

.

.

.

0x8

Memory
0x0
0x4

N-1

N

a

0x8
0xC

0x10

p

int a = 10;
int *p = NULL;

p = &a;
p = p + 3;
p = p – 2;
p++;
p--;

Lecture 11_7.1 - Slide 77 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Pointers Arithmetic's – Examples

10

.

.

.

0xC

Memory
0x0
0x4

N-1

N

a

0x8
0xC

0x10

p

int a = 10;
int *p = NULL;

p = &a;
p = p + 3;
p = p – 2;
p++;
p--;

Lecture 11_7.1 - Slide 78 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Pointers Arithmetic's – Examples

10

.

.

.

0x8

Memory
0x0
0x4

N-1

N

a

0x8
0xC

0x10

p

int a = 10;
int *p = NULL;

p = &a;
p = p + 3;
p = p – 2;
p++;
p--;

Lecture 11_7.1 - Slide 79 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

• Integer math operations can be used with pointers.
• If you increment a pointer, it will be increased by

the size of whatever it points to.

a[0] a[1] a[2] a[3] a[4]

int a[5];
int *ptr = a;

*ptr

Pointers Arithmetic’s – vectors

Lecture 11_7.1 - Slide 80 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

• Integer math operations can be used with pointers.
• If you increment a pointer, it will be increased by

the size of whatever it points to.

a[0] a[1] a[2] a[3] a[4]

int a[5];
int *ptr = a;

*ptr
*(ptr+2)

Pointers Arithmetic’s – vectors

Lecture 11_7.1 - Slide 81 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

• Integer math operations can be used with pointers.
• If you increment a pointer, it will be increased by

the size of whatever it points to.

a[0] a[1] a[2] a[3] a[4]

int a[5];
int *ptr = a;

*ptr
*(ptr+2)

*(ptr+4)

Pointers Arithmetic’s – vectors

Lecture 11_7.1 - Slide 82 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

• Integer math operations can be used with pointers.
• If you increment a pointer, it will be increased by

the size of whatever it points to.

a[0] a[1] a[2] a[3] a[4]

int a[5];
int *ptr = a;

*ptr
*(ptr+2)

*(ptr+4)

An array element can
be accessed both by
a[i] and *(ptr+i)

Pointers Arithmetic’s – vectors

Lecture 11_7.1 - Slide 83 Rel. 11/04/2018 © Savino, Sanchez – 2017, 2018

Малые Автюхи, Калинковичский район, Республики Беларусь

