Pointers

Alessandro SAVINO
Politecnico di Torino (Italy)

alessandro.savino@polito.it

www.testqgroup.polito.it



http://www.testgroup.polito.it/

License Information

This work is licensed under the
Creative Commons BY-NC
License

To view a copy of the license, visit:
http://creativecommons.org/licenses/by-nc/3.0/legalcode

Lecture 11_7.1 - Slide 2 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018



Disclaimer

We disclaim any warranties or representations as
to the accuracy or completeness of this material.

Materials are provided “as is” without warranty of
any kind, either express or implied, including
without limitation, warranties of merchantability,
fitness for a particular purpose, and non-
infringement.

Under no circumstances shall we be liable for any
loss, damage, liability or expense incurred or
suffered which is claimed to have resulted from
use of this material.
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Goal

— This lecture presents a global overviews of
problems and issues related to dynamic
memory allocation and pointers usage
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Prerequisites

— Basic knowledge of C programming language
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Homework

— None
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Outline

* Pointers:
— Definition
— Initialization
— Operators
— Variable Reference
— Pointers Arithmetic’s
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Outline

* Pointers:
C — Definition )
— Initialization
— Operators
— Variable Reference
— Pointers Arithmetic’s
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Pointers - Definition

A pointers is a variable containing a memory

address
Memory
0Ox00
0Ox04
;Pointer }
0x04 ” N-1
N
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Pointers - Definition (cnta)

* While defining a pointer, it requires to use the *
special character
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Pointers — Definition (cnta)

 Example of pointer definition:

— 1int *p;

Lecture 11_7.1 - Slide 11
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-

p holds memory

address of an integer

variable

~

/
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Pointers — Definition (cnta)

 Example of pointer definition:

— int *p;
& R

p holds memory
address of char
variable

\_ /

— char *p;
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Pointers — Definition (cnta)

 Example of pointer definition:
— 1int *p;
— char *p;
— double *p;

-

p holds memory
address of double
variable

\_ /
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Pointers — Definition (cnta)

 Example of pointer definition:

— 1int *p;

— char *p;

— double *p;

X ™

— void *p;
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-

p holds generic
memory address

/

Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018



Pointers — Definition (cnta)

 Example of pointer definition:

— int *p; ) / \
— char *p; Each pointer contains a
— memory address
- d le *p;
ouble *p N y
— void *p; —
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Pointers — Definition (cnta)

 Example of pointer definition:

— int *p; ) / \
— char *p; Each pointer contains a
— memory address
- d le *p;
ouble *p N y
— void *p; —

All pointers have the same
size regardless what they
point to !!!
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Why do we need
to specify the
pointer type?

/
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We need to know what type of
variable we are going to get
when we dereference \
(i.e., use) the pointer
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Implicit conversions are illegal!

int *p;

double f; N

&f; //ERROR

P
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Pointers — Definition (cnta)

* Multiple pointers definition require a * before each
variable definition:

— int *p’ *Pll *x’ **y;
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Pointers — Definition (cnta)

* Multiple pointers definition require a * before each
variable definition:

— int *p’ *P1’ *x’ **y;

X some int
int *x; [ o——| |
)4 some *int some int
1 *kx7 °
int *7y —x—_o——| |
Z some double
double *z; I o—1— | |
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Outline

* Pointers:
— Definition
(- Initialization )
— Operators
— Variable Reference
— Pointers Arithmetic’s
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Pointers — Initialization

* A pointer can be initialized to:
-0
— NULL / nullptr
— an address
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Pointers — Initialization (cnta)

* A pointer can be initialized to:

-0

— NULL / nullpt
— an address

-

int *p = NULL

N

~

/
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Rel. 1

The pointer points to
nothing

\

)

Memory

NULL

S

0x00
0x04

L2

N-1
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Pointers — Initialization (cnta)

* A pointer can be initialized to:

\

-0 ( The pointer points to
— NULL an address
— an address \_ )
Memory
-~ ~ 0x00
0x04

int *p= 0x04 j>

N / ' P
0x04 “T N-1

Lecture 11_7.1 - Slide 25 Rel. 1 Sanchez — 2017, 2018




Pointers — Initialization (cnta)

* A pointer can be initialized to:

\

-0 ( The pointer points to
— NULL an address
— an address \_ )
Mem%
~ 0x00
- w /
—— _(x04
in It is NOT recommended the
usage of this technique !!!
\_ P

ﬁ\/ﬁ -1

Sanchez — 2017, 2018
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Outline

* Pointers:
— Definition
— Initialization
C — Operators )
— Variable Reference
— Pointers Arithmetic’s
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Pointers — Operators

« Two operators can be used with pointers:
- &
_ %
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Pointers — & Operator

« The & operator is called the reference operator
* It returns the address of an operand.
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Pointers — & Operator

« The & operator is called the reference operator
* It returns the address of an operand.

Memory

0x00

10 | o4, }

ﬁ int a= 10

N-1
N
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Pointers — & Operator

« The & operator is called the reference operator
* It returns the address of an operand.

Memory /%3
A 0x00

10 " | 0x04
(int *p = NULL; }
L — U
NULL | N-1
N
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Pointers — & Operator

« The & operator is called the reference operator
* It returns the address of an operand.

Memory /%3
A 0x00

10 0x04

0x04 N-1
LT
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Pointers — & Operator

« The & operator is called the reference operator

* It returns the address of an operand.

Memory /%3
A 0x00

d

10 0x04
- ™
&p returns N-1
N y
0x04
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Pointers — * Operator

« The” operator is called the indirection or
dereferencing operator

* Returns the value of the object pointed by the
pointer
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Pointers — * Operator

- The * operator is called the indirection or
dereferencing operator

* Returns the value of the object pointed by the

pointer
Memory a
0x00
10 0Ox04
P
0x04 N-1
N
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Pointers — * Operator

- The * operator is called the indirection or
dereferencing operator

* Returns the value of the object pointed by the

pointer
Memory a
0x00
10 0x04
- ™
*p returns 10
N /
0x04 N-1
N P
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Pointers — Operators Example

//;;t X 1; \\\\

int y = 2;

int *ip; /*ip is a pointer to int */

ip &x; /*ip now points to x*/

y = *ip; /*y is now 1%*/

\\iip = 0; /*x is now 0 */ ////
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Pointers — Operators

 The * and the & are inverse: they cancel each other
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Pointers — Operators

 The * and the & are inverse: they cancel each other

Memory a

0x00 [ h
10 ~ 0x04 &p return N-1
*p return 10
\ /
0x04 N-1
\\ N
e
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Pointers — Operators

 The * and the & are inverse: they cancel each other

Memory a

0x00 [ I

10 7 | 0x04 | g*p
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Pointers — Operators

 The * and the & are inverse: they cancel each other

Memory a

0x00 [ I

10 - 0x04 &*p = & (*p)

TN /
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Pointers — Operators

 The * and the & are inverse: they cancel each other

Memory a

0x00 / N\
10 7 | 0x04| s*p=s(*p
1. *p:
returns the content
of cell pointed by p
(i.e., the variable a)
0x04 N-1
NN /
B
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Pointers — Operators

 The * and the & are inverse: they cancel each other

Memory a

0x00
10 ~ | 0x04
0x04 N-1
N N
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-~

&*p =& (*p)

-

~

1. *p = a

/
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Pointers — Operators

 The * and the & are inverse: they cancel each other

Memory a

0x00 /- I

10 -~ 0x04 &*p=&(*p) = &(a)
1. *p = a

TN /
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Pointers — Operators

 The * and the & are inverse: they cancel each other

Memory a

10

/
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0x00
0x04

-~

&*p=&(*p) = &(a)
1. *p = a
2. &(a):
returns the

address of the
variable a

.

~

/
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Pointers — Operators

 The * and the & are inverse: they cancel each other

Memory a

0x00 / I

10 -~ 0x04 &*p=&(*p) = &(a)
1. *p = a
2. &(a) =0x04

TN /
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Pointers —

Operators

 The * and the & are inverse: they cancel each other

Memory a

10 ~ | 0x04
0x04 N-1
N N

0x00 /

&*p=&(*p) = &(a) =

0x04
1. *p = a
2. &(a) =0x04

Rel. 11/04/2018
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Pointers — Operators

 The * and the & are inverse: they cancel each other

Memory a

0x00 [ I

10 7 |Ox04| gp
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Pointers — Operators

 The * and the & are inverse: they cancel each other

Memory a

0x00 [ I

10 7 | Ox04| *gp=*(&p)

TN /
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Pointers — Operators

 The * and the & are inverse: they cancel each other

Memory a

0x00 [ I
10 7 | Ox04| *gp=*(sp
1. &p:
returns the address
of the pointer p
(i.e., N-1)
0x04 N-1
NI NG /
e
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Pointers — Operators

 The * and the & are inverse: they cancel each other

Memory a

0x00
10 ~ | 0x04
0x04 N-1
N N
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-~

*&p=* (&p)

-

~

1. &p = N-1

/

Rel. 11/04/2018

© Savino, Sanchez — 2017, 2018



Pointers — Operators

 The * and the & are inverse: they cancel each other

Memory a

0x00 [ I

10 - 0x04 | *gp=*(&p) = * (N-1)
1. &p = N-1

TN /
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Pointers — Operators

 The * and the & are inverse: they cancel each other

|+ .

0x00
10 - 0x04 | *gp=*(&p) = * (N-1)
1. &p = N-1
2. *(N-1):

returns the content

of the cell at the
0x04 N-1 N-1 address

TN W
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Pointers — Operators

 The * and the & are inverse: they cancel each other

Memory a

0x00 [ I

10 7 0x04 | *gp=* (&p) = * (N-1)
1. &p = N-1
2. *(N-1) =0x04

TN /
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Pointers — Operators

 The * and the & are inverse: they cancel each other

Memory a

0x00 [ I

10 ~ |ox04| *&p=*(&p) =*(N-1) =
0x04

1. &p = N-1

2. *(N-1) =0x04

TN /
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Pointers — Operators

 The * and the & are inverse: they cancel each other

Memory a

0x00 I

10 ~ | 0x04

0x04
0x04

&*p

TN /
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Pointers — Operators

 The * and the & are inverse: they cancel each other

Memory a

&*p

*&p

0x04
0x04

&*p

~

/

0x00 /
10 ~ | 0x04
0x04 N-1
NN
B
Lecture 11_7.1 - Slide 57 Rel. 11/04/2018

© Savino, Sanchez — 2017, 2018



Outline

* Pointers:
— Definition
— Initialization
— Operators

C — Variable Reference )
— Pointers Arithmetic’s
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How to reference a variable

 There are two ways to use (i.e., reference) a
variable:

— Direct Variable Reference
— Indirect Variable Reference
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Direct Variable Reference

 Direct reference to a variable:
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-

int a;

a=10;

~

Main memory

Rel. 11/04/2018
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Direct Variable Reference (cnta)

 Direct reference to a variable:

Main memory

a N
~~ int a; a.
a=10; A \
N / Variable a is

allocate in the
main memory

N /
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Direct Variable Reference

 Direct reference to a variable:
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-

int a;

~~ a=10;

~

Main memory

a=10

Rel. 11/04/2018

o,

10 is written in
the memory

location
associated to a

N /
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Indirect Variable Reference

 [Indirect reference to a variable :

Main memory

4 N

int a;
int *p;
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Indirect Variable Reference (cnta)

 Indirect reference to a variable:

Main memory

/> int a; \

int *p; a.

p = &a; A \
_ P = 107/ Variable a is

allocate in the
main memory

N /
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Indirect Variable Reference (cnta)

 Indirect reference to a variable:
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-

= int *p;

Main memory

~

int a;

L

Rel. 11/04/2018

-

Pointer p is
allocate in the
main memory

v
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Indirect Variable Reference (cnta)

 Indirect reference to a variable:

Main memory

- N
int a;
int *p; a
~p = &a; p=
= 10; addr(a) ~

The address of
a Is assigned to
the pointer p

N /
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Indirect Variable Reference (cnta)

 Indirect reference to a variable:

Main memory

- N
int a;
int *p; a=10
; = &a; P=
\> P = 10;/ addr(a) 10 is written in\

the memory
location
associated to a
through the

\ pointer p /
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Outline

* Pointers:
— Definition
— Initialization
— Operators
— Variable Reference
C — Pointers Arithmetic’s >
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Pointers Arithmetic

 The pointer arithmetic includes Increment and
Decrement operations, only
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Using Pointers to scan Arrays

 The pointer arithmetic includes Increment and
Decrement operations, only

« Examples:

-p=p + 5;
-p=p - 10;
- ptt+;

If p is a pointer to an integer,
after this instruction
p will point to 5 “integers”
after p

\_ /

Lecture 11_7.1 - Slide 70 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018



Using Pointers to scan Arrays

 The pointer arithmetic includes Increment and
Decrement operations, only

« Examples:
-p=p + 5;

- P =P - 1
- p++; >

The ACTUAL atane
increment depends on
the SIZE of the -2

pointed data
A .
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Pointers Arithmetic's — Examples

Memory @
/ | \ XO
[>>+nt a = 10; 10 7 oxd
int *p = NULL;
O0x8
P = &a; 0xC
Pp=p + 3; 0x10
P=pP - 2;
pt+;
P Y,
N-1
N
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Pointers Arithmetic's — Examples

Memory @
int a = 10; )z
Ox4
> int *p = NULL; 10
0x8
P = &a; 0xC
p=p+ 3; 0x10
P=pP - 2;
p++; '
LA, s
NULL | N1
N
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Pointers Arithmetic's — Examples

Memory @
/ | \ XO
+nt a = 10; 10 | ox4
int *p = NULL;
O0x8
> P = &a/ OxC
P=p+ 3; 0x10
P=pP - 2;
pt+;
P Y, pas
Oxd  ~ |N-
N
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Pointers Arithmetic's — Examples

///7 int a = 10; \\\

int *p = NULL;

p = &a;

>p=p + 3;
P=P - 2;
pt+;
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Memory

x0

10

’ Ox4

0x8

OxC

0x10

/E]

0x10

//P¢1

N
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Pointers Arithmetic's — Examples

Memory @
/ \ XO
int a = 10; 10 7 oxa
int *p = NULL;
Ox8
p — &a; OxC
p=p + 3; 0x10
>p =p - 2;
p++;
e Y pas
0x8 /N-1
N
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Pointers Arithmetic's — Examples

Memory @
/ | \ XO
J_.nt a = 10; 10 | ox4
int *p = NULL;
O0x8
P = &a; 0xC
P=p+ 3; 0x10
P=P — 2;
> p++; '
NS e
0xC 7 N1
N
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Pointers Arithmetic's — Examples

Memory @
/ | \ XO
+nt a = 10; 10 7 1 oxa
int *p = NULL;
O0x8
P = &a; 0xC
P=p+ 3; 0x10
P=P — 2;
p++; '
Nl | I PO
0x8 7 N1
N
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Pointers Arithmetic’s — vectors

* Integer math operations can be used with pointers.

* If you increment a pointer, it will be increased by
the size of whatever it points to.

int a[5];
int *ptr = a;

*pltr

| I I I I |
a[0] a[l] a[2] a[3] al[4]
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Pointers Arithmetic’s — vectors

* Integer math operations can be used with pointers.

* If you increment a pointer, it will be increased by
the size of whatever it points to.

int a[3];
int *ptr = a; x(ptr+2)

*pltr /
| I I I I |
a[0] a[l] a[2] a[3] al[4]

Lecture 11_7.1 - Slide 80 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018



Pointers Arithmetic’s — vectors

* Integer math operations can be used with pointers.

* If you increment a pointer, it will be increased by
the size of whatever it points to.

int a[5];
int *ptr = a; *(ptr+2) * (ptr+d)
X
*ptr / / P
I

| I I I I |
a[0] a[l] a[2] a[3] al[4]
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Pointers Arithmetic’s — vectors

* Integer math operations can be used with pointers.

* If you increment a pointer, it will be increased by
the size of whatever it points to.

int a[5];

int *ptr

*ptr

a, * (7tr+2) * (ptr+d)

/

D
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af[0]

a[l] a| An array element can
be accessed both by

\é[i] and * (ptr+i)

~

/
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