Pointers

Alessandro SAVINO
Politecnico di Torino (Italy)

alessandro.savino@polito.it

www.testqgroup.polito.it

http://www.testgroup.polito.it/

License Information

This work is licensed under the
Creative Commons BY-NC
License

To view a copy of the license, visit:
http://creativecommons.org/licenses/by-nc/3.0/legalcode

Lecture 11_7.1 - Slide 2 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Disclaimer

We disclaim any warranties or representations as
to the accuracy or completeness of this material.

Materials are provided “as is” without warranty of
any kind, either express or implied, including
without limitation, warranties of merchantability,
fitness for a particular purpose, and non-
infringement.

Under no circumstances shall we be liable for any
loss, damage, liability or expense incurred or
suffered which is claimed to have resulted from
use of this material.

Lecture 11_7.1 - Slide 3 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Goal

— This lecture presents a global overviews of
problems and issues related to dynamic
memory allocation and pointers usage

Lecture 11_7.1 - Slide 4 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Prerequisites

— Basic knowledge of C programming language

Lecture 11_7.1 - Slide 5 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Homework

— None

Lecture 11_7.1 - Slide 6 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Outline

* Pointers:
— Definition
— Initialization
— Operators
— Variable Reference
— Pointers Arithmetic’s

Lecture 11_7.1 - Slide 7 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Outline

* Pointers:
C — Definition)
— Initialization
— Operators
— Variable Reference
— Pointers Arithmetic’s

Lecture 11_7.1 - Slide 8 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Pointers - Definition

A pointers is a variable containing a memory

address
Memory
0Ox00
0Ox04
;Pointer }
0x04 ” N-1
N

Lecture 11_7.1 - Slide 9 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Pointers - Definition (cnta)

* While defining a pointer, it requires to use the *
special character

Lecture 11_7.1 - Slide 10 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Pointers — Definition (cnta)

 Example of pointer definition:

— 1int *p;

Lecture 11_7.1 - Slide 11

s

-

p holds memory

address of an integer

variable

~

/

Rel. 11/04/2018

© Savino, Sanchez — 2017, 2018

Pointers — Definition (cnta)

 Example of pointer definition:

— int *p;
& R

p holds memory
address of char
variable

_ /

— char *p;

Lecture 11_7.1 - Slide 12 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Pointers — Definition (cnta)

 Example of pointer definition:
— 1int *p;
— char *p;
— double *p;

-

p holds memory
address of double
variable

_ /

Lecture 11_7.1 - Slide 13 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Pointers — Definition (cnta)

 Example of pointer definition:

— 1int *p;

— char *p;

— double *p;

X ™

— void *p;

Lecture 11_7.1 - Slide 14

-

p holds generic
memory address

/

Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Pointers — Definition (cnta)

 Example of pointer definition:

— int *p;) / \
— char *p; Each pointer contains a
— memory address
- d le *p;
ouble *p N y
— void *p; —

Lecture 11_7.1 - Slide 15 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Pointers — Definition (cnta)

 Example of pointer definition:

— int *p;) / \
— char *p; Each pointer contains a
— memory address
- d le *p;
ouble *p N y
— void *p; —

All pointers have the same
size regardless what they
point to !!!

Lecture 11_7.1 - Slide 16 Re/11/04/2018 © Savino, Sanchez — 2017, 2018

Why do we need
to specify the
pointer type?

/

Lecture 11_7.1 - Slide 17 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

We need to know what type of
variable we are going to get
when we dereference \
(i.e., use) the pointer

Lecture 11_7.1 - Slide 18 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Implicit conversions are illegal!

int *p;

double f; N

&f; //ERROR

P

Lecture 11_7.1 - Slide 19 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Pointers — Definition (cnta)

* Multiple pointers definition require a * before each
variable definition:

— int *p’ *Pll *x’ **y;

Lecture 11_7.1 - Slide 20 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Pointers — Definition (cnta)

* Multiple pointers definition require a * before each
variable definition:

— int *p’ *P1’ *x’ **y;

X some int
int *x; [o——| |
)4 some *int some int
1 *kx7 °
int *7y —x—_o——| |
Z some double
double *z; I o—1— | |

Lecture 11_7.1 - Slide 21 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Outline

* Pointers:
— Definition
(- Initialization)
— Operators
— Variable Reference
— Pointers Arithmetic’s

Lecture 11_7.1 - Slide 22 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Pointers — Initialization

* A pointer can be initialized to:
-0
— NULL / nullptr
— an address

Lecture 11_7.1 - Slide 23 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Pointers — Initialization (cnta)

* A pointer can be initialized to:

-0

— NULL / nullpt
— an address

-

int *p = NULL

N

~

/

Lecture 11_7.1 - Slide 24

T

Rel. 1

The pointer points to
nothing

\

)

Memory

NULL

S

0x00
0x04

L2

N-1

chez — 2017, 2018

Pointers — Initialization (cnta)

* A pointer can be initialized to:

\

-0 (The pointer points to
— NULL an address
— an address _)
Memory
-~ ~ 0x00
0x04

int *p= 0x04 j>

N / ' P
0x04 “T N-1

Lecture 11_7.1 - Slide 25 Rel. 1 Sanchez — 2017, 2018

Pointers — Initialization (cnta)

* A pointer can be initialized to:

\

-0 (The pointer points to
— NULL an address
— an address _)
Mem%
~ 0x00
- w /
—— _(x04
in It is NOT recommended the
usage of this technique !!!
_ P

ﬁ\/ﬁ -1

Sanchez — 2017, 2018

Lecture 11_7.1 - Slide 26

Outline

* Pointers:
— Definition
— Initialization
C — Operators)
— Variable Reference
— Pointers Arithmetic’s

Lecture 11_7.1 - Slide 27 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Pointers — Operators

« Two operators can be used with pointers:
- &
_ %

Lecture 11_7.1 - Slide 28 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Pointers — & Operator

« The & operator is called the reference operator
* It returns the address of an operand.

Lecture 11_7.1 - Slide 29 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Pointers — & Operator

« The & operator is called the reference operator
* It returns the address of an operand.

Memory

0x00

10 | o4, }

ﬁ int a= 10

N-1
N

Lecture 11_7.1 - Slide 30 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Pointers — & Operator

« The & operator is called the reference operator
* It returns the address of an operand.

Memory /%3
A 0x00

10 " | 0x04
(int *p = NULL; }
L — U
NULL | N-1
N

Lecture 11_7.1 - Slide 31 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Pointers — & Operator

« The & operator is called the reference operator
* It returns the address of an operand.

Memory /%3
A 0x00

10 0x04

0x04 N-1
LT

Lecture 11_7.1 - Slide 32 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Pointers — & Operator

« The & operator is called the reference operator

* It returns the address of an operand.

Memory /%3
A 0x00

d

10 0x04
- ™
&p returns N-1
N y
0x04

Lecture 11_7.1 - Slide 33

Rel. 11/04/2018

N-1
[t

© Savino, Sanchez — 2017, 2018

Pointers — * Operator

« The” operator is called the indirection or
dereferencing operator

* Returns the value of the object pointed by the
pointer

Lecture 11_7.1 - Slide 34 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Pointers — * Operator

- The * operator is called the indirection or
dereferencing operator

* Returns the value of the object pointed by the

pointer
Memory a
0x00
10 0Ox04
P
0x04 N-1
N
Lecture 11_7.1 - Slide 35 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Pointers — * Operator

- The * operator is called the indirection or
dereferencing operator

* Returns the value of the object pointed by the

pointer
Memory a
0x00
10 0x04
- ™
*p returns 10
N /
0x04 N-1
N P
Lecture 11_7.1 - Slide 36 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Pointers — Operators Example

//;;t X 1; \\\\

int y = 2;

int *ip; /*ip is a pointer to int */

ip &x; /*ip now points to x*/

y = *ip; /*y is now 1%*/

\\iip = 0; /*x is now 0 */ ////

Lecture 11_7.1 - Slide 37 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Pointers — Operators

 The * and the & are inverse: they cancel each other

Lecture 11_7.1 - Slide 38 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Pointers — Operators

 The * and the & are inverse: they cancel each other

Memory a

0x00 [h
10 ~ 0x04 &p return N-1
*p return 10
\ /
0x04 N-1
\\ N
e
Lecture 11_7.1 - Slide 39 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Pointers — Operators

 The * and the & are inverse: they cancel each other

Memory a

0x00 [I

10 7 | 0x04 | g*p

Lecture 11_7.1 - Slide 40 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Pointers — Operators

 The * and the & are inverse: they cancel each other

Memory a

0x00 [I

10 - 0x04 &*p = & (*p)

TN /

Lecture 11_7.1 - Slide 41 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Pointers — Operators

 The * and the & are inverse: they cancel each other

Memory a

0x00 / N\
10 7 | 0x04| s*p=s(*p
1. *p:
returns the content
of cell pointed by p
(i.e., the variable a)
0x04 N-1
NN /
B
Lecture 11_7.1 - Slide 42 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Pointers — Operators

 The * and the & are inverse: they cancel each other

Memory a

0x00
10 ~ | 0x04
0x04 N-1
N N

Lecture 11_7.1 - Slide 43

-~

&*p =& (*p)

-

~

1. *p = a

/

Rel. 11/04/2018

© Savino, Sanchez — 2017, 2018

Pointers — Operators

 The * and the & are inverse: they cancel each other

Memory a

0x00 /- I

10 -~ 0x04 &*p=&(*p) = &(a)
1. *p = a

TN /

Lecture 11_7.1 - Slide 44 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Pointers — Operators

 The * and the & are inverse: they cancel each other

Memory a

10

/

Lecture 11_7.1 - Slide 45

Rel. 11/04/2018

0x00
0x04

-~

&*p=&(*p) = &(a)
1. *p = a
2. &(a):
returns the

address of the
variable a

.

~

/

© Savino, Sanchez — 2017, 2018

Pointers — Operators

 The * and the & are inverse: they cancel each other

Memory a

0x00 / I

10 -~ 0x04 &*p=&(*p) = &(a)
1. *p = a
2. &(a) =0x04

TN /

Lecture 11_7.1 - Slide 46 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Lecture 11_7.1 - Slide 47

Pointers —

Operators

 The * and the & are inverse: they cancel each other

Memory a

10 ~ | 0x04
0x04 N-1
N N

0x00 /

&*p=&(*p) = &(a) =

0x04
1. *p = a
2. &(a) =0x04

Rel. 11/04/2018

-

~

© Savino, Sanchez — 2017, 2018

Pointers — Operators

 The * and the & are inverse: they cancel each other

Memory a

0x00 [I

10 7 |Ox04| gp

Lecture 11_7.1 - Slide 48 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Pointers — Operators

 The * and the & are inverse: they cancel each other

Memory a

0x00 [I

10 7 | Ox04| *gp=*(&p)

TN /

Lecture 11_7.1 - Slide 49 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Pointers — Operators

 The * and the & are inverse: they cancel each other

Memory a

0x00 [I
10 7 | Ox04| *gp=*(sp
1. &p:
returns the address
of the pointer p
(i.e., N-1)
0x04 N-1
NI NG /
e
Lecture 11_7.1 - Slide 50 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Pointers — Operators

 The * and the & are inverse: they cancel each other

Memory a

0x00
10 ~ | 0x04
0x04 N-1
N N

Lecture 11_7.1 - Slide 51

-~

&p= (&p)

-

~

1. &p = N-1

/

Rel. 11/04/2018

© Savino, Sanchez — 2017, 2018

Pointers — Operators

 The * and the & are inverse: they cancel each other

Memory a

0x00 [I

10 - 0x04 | *gp=*(&p) = * (N-1)
1. &p = N-1

TN /

Lecture 11_7.1 - Slide 52 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Pointers — Operators

 The * and the & are inverse: they cancel each other

|+ .

0x00
10 - 0x04 | *gp=*(&p) = * (N-1)
1. &p = N-1
2. *(N-1):

returns the content

of the cell at the
0x04 N-1 N-1 address

TN W

Lecture 11_7.1 - Slide 53 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Pointers — Operators

 The * and the & are inverse: they cancel each other

Memory a

0x00 [I

10 7 0x04 | *gp=* (&p) = * (N-1)
1. &p = N-1
2. *(N-1) =0x04

TN /

Lecture 11_7.1 - Slide 54 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Pointers — Operators

 The * and the & are inverse: they cancel each other

Memory a

0x00 [I

10 ~ |ox04| *&p=*(&p) =*(N-1) =
0x04

1. &p = N-1

2. *(N-1) =0x04

TN /

Lecture 11_7.1 - Slide 55 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Pointers — Operators

 The * and the & are inverse: they cancel each other

Memory a

0x00 I

10 ~ | 0x04

0x04
0x04

&*p

TN /

Lecture 11_7.1 - Slide 56 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Pointers — Operators

 The * and the & are inverse: they cancel each other

Memory a

&*p

*&p

0x04
0x04

&*p

~

/

0x00 /
10 ~ | 0x04
0x04 N-1
NN
B
Lecture 11_7.1 - Slide 57 Rel. 11/04/2018

© Savino, Sanchez — 2017, 2018

Outline

* Pointers:
— Definition
— Initialization
— Operators

C — Variable Reference)
— Pointers Arithmetic’s

Lecture 11_7.1 - Slide 58 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

How to reference a variable

 There are two ways to use (i.e., reference) a
variable:

— Direct Variable Reference
— Indirect Variable Reference

Lecture 11_7.1 - Slide 59 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Direct Variable Reference

 Direct reference to a variable:

Lecture 11_7.1 - Slide 60

-

int a;

a=10;

~

Main memory

Rel. 11/04/2018

© Savino, Sanchez — 2017, 2018

Direct Variable Reference (cnta)

 Direct reference to a variable:

Main memory

a N
~~ int a; a.
a=10; A \
N / Variable a is

allocate in the
main memory

N /

Lecture 11_7.1 - Slide 61 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Direct Variable Reference

 Direct reference to a variable:

Lecture 11_7.1 - Slide 62

-

int a;

~~ a=10;

~

Main memory

a=10

Rel. 11/04/2018

o,

10 is written in
the memory

location
associated to a

N /

© Savino, Sanchez — 2017, 2018

Indirect Variable Reference

 [Indirect reference to a variable :

Main memory

4 N

int a;
int *p;

Lecture 11_7.1 - Slide 63 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Indirect Variable Reference (cnta)

 Indirect reference to a variable:

Main memory

/> int a; \

int *p; a.

p = &a; A \
_ P = 107/ Variable a is

allocate in the
main memory

N /

Lecture 11_7.1 - Slide 64 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Indirect Variable Reference (cnta)

 Indirect reference to a variable:

Lecture 11_7.1 - Slide 65

-

= int *p;

Main memory

~

int a;

L

Rel. 11/04/2018

-

Pointer p is
allocate in the
main memory

v

© Savino, Sanchez — 2017, 2018

Indirect Variable Reference (cnta)

 Indirect reference to a variable:

Main memory

- N
int a;
int *p; a
~p = &a; p=
= 10; addr(a) ~

The address of
a Is assigned to
the pointer p

N /

Lecture 11_7.1 - Slide 66 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Indirect Variable Reference (cnta)

 Indirect reference to a variable:

Main memory

- N
int a;
int *p; a=10
; = &a; P=
\> P = 10;/ addr(a) 10 is written in\

the memory
location
associated to a
through the

\ pointer p /

Lecture 11_7.1 - Slide 67 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Outline

* Pointers:
— Definition
— Initialization
— Operators
— Variable Reference
C — Pointers Arithmetic’s >

Lecture 11_7.1 - Slide 68 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Pointers Arithmetic

 The pointer arithmetic includes Increment and
Decrement operations, only

Lecture 11_7.1 - Slide 69 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Using Pointers to scan Arrays

 The pointer arithmetic includes Increment and
Decrement operations, only

« Examples:

-p=p + 5;
-p=p - 10;
- ptt+;

If p is a pointer to an integer,
after this instruction
p will point to 5 “integers”
after p

_ /

Lecture 11_7.1 - Slide 70 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Using Pointers to scan Arrays

 The pointer arithmetic includes Increment and
Decrement operations, only

« Examples:
-p=p + 5;

- P =P - 1
- p++; >

The ACTUAL atane
increment depends on
the SIZE of the -2

pointed data
A .

Lecture 11_7.1 - Slide 71 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Pointers Arithmetic's — Examples

Memory @
/ | \ XO
[>>+nt a = 10; 10 7 oxd
int *p = NULL;
O0x8
P = &a; 0xC
Pp=p + 3; 0x10
P=pP - 2;
pt+;
P Y,
N-1
N

Lecture 11_7.1 - Slide 72 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Pointers Arithmetic's — Examples

Memory @
int a = 10;)z
Ox4
> int *p = NULL; 10
0x8
P = &a; 0xC
p=p+ 3; 0x10
P=pP - 2;
p++; '
LA, s
NULL | N1
N

Lecture 11_7.1 - Slide 73 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Pointers Arithmetic's — Examples

Memory @
/ | \ XO
+nt a = 10; 10 | ox4
int *p = NULL;
O0x8
> P = &a/ OxC
P=p+ 3; 0x10
P=pP - 2;
pt+;
P Y, pas
Oxd ~ |N-
N

Lecture 11_7.1 - Slide 74

Rel. 11/04/2018

© Savino, Sanchez — 2017, 2018

Pointers Arithmetic's — Examples

///7 int a = 10; \\\

int *p = NULL;

p = &a;

>p=p + 3;
P=P - 2;
pt+;

Lecture 11_7.1 - Slide 75

Memory

x0

10

’ Ox4

0x8

OxC

0x10

/E]

0x10

//P¢1

N

Rel. 11/04/2018

© Savino, Sanchez — 2017, 2018

Pointers Arithmetic's — Examples

Memory @
/ \ XO
int a = 10; 10 7 oxa
int *p = NULL;
Ox8
p — &a; OxC
p=p + 3; 0x10
>p =p - 2;
p++;
e Y pas
0x8 /N-1
N

Lecture 11_7.1 - Slide 76

Rel. 11/04/2018

© Savino, San

chez — 2017, 2018

Pointers Arithmetic's — Examples

Memory @
/ | \ XO
J_.nt a = 10; 10 | ox4
int *p = NULL;
O0x8
P = &a; 0xC
P=p+ 3; 0x10
P=P — 2;
> p++; '
NS e
0xC 7 N1
N

Lecture 11_7.1 - Slide 77 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Pointers Arithmetic's — Examples

Memory @
/ | \ XO
+nt a = 10; 10 7 1 oxa
int *p = NULL;
O0x8
P = &a; 0xC
P=p+ 3; 0x10
P=P — 2;
p++; '
Nl | I PO
0x8 7 N1
N

Lecture 11_7.1 - Slide 78 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Pointers Arithmetic’s — vectors

* Integer math operations can be used with pointers.

* If you increment a pointer, it will be increased by
the size of whatever it points to.

int a[5];
int *ptr = a;

*pltr

| I I I I |
a[0] a[l] a[2] a[3] al[4]

Lecture 11_7.1 - Slide 79 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Pointers Arithmetic’s — vectors

* Integer math operations can be used with pointers.

* If you increment a pointer, it will be increased by
the size of whatever it points to.

int a[3];
int *ptr = a; x(ptr+2)

*pltr /
| I I I I |
a[0] a[l] a[2] a[3] al[4]

Lecture 11_7.1 - Slide 80 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Pointers Arithmetic’s — vectors

* Integer math operations can be used with pointers.

* If you increment a pointer, it will be increased by
the size of whatever it points to.

int a[5];
int *ptr = a; *(ptr+2) * (ptr+d)
X
*ptr / / P
I

| I I I I |
a[0] a[l] a[2] a[3] al[4]

Lecture 11_7.1 - Slide 81 Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Pointers Arithmetic’s — vectors

* Integer math operations can be used with pointers.

* If you increment a pointer, it will be increased by
the size of whatever it points to.

int a[5];

int *ptr

*ptr

a, * (7tr+2) * (ptr+d)

/

D

Lecture 11_7.1 - Slide 82

af[0]

a[l] a| An array element can
be accessed both by

\é[i] and * (ptr+i)

~

/

Rel. 11/04/2018 © Savino, Sanchez — 2017, 2018

Manbie ABTioxu, KanmHkoBuyckumn pamoH, Pecnybnukn benapychb

