Copy Constructor
& Other Advanced
features

Alessandro Savino
Politecnico di Torino (ltaly)

alessandro.savino@polito.it

www.testqgroup.polito.it

http://www.testgroup.polito.it/

License Information

This work is licensed under the
Creative Commons BY-NC
License

To view a copy of the license, visit:
http://creativecommons.org/licenses/by-nc/3.0/legalcode

Lecture 11_6.3 — Slide 2 Rel. 06/05/2019 © Savino, Sanchez — 2017, 2018

Disclaimer

 We disclaim any warranties or representations as
to the accuracy or completeness of this material.

 Materials are provided “as is” without warranty of
any kind, either express or implied, including
without limitation, warranties of merchantability,
fitness for a particular purpose, and non-
infringement.

 Under no circumstances shall we be liable for any
loss, damage, liability or expense incurred or
suffered which is claimed to have resulted from
use of this material.

Lecture 11_6.3 — Slide 3 Rel. 06/05/2019 © Savino, Sanchez — 2017, 2018

Goal

— This lecture presents a deeper view about
C++ classes and objects

Lecture 11_6.3 — Slide 4 Rel. 06/05/2019 © Savino, Sanchez — 2017, 2018

Prerequisites

— A basic knowledge about classes

Lecture 11_6.3 — Slide 5 Rel. 06/05/2019 © Savino, Sanchez — 2017, 2018

Homework

— None

Lecture 11_6.3 — Slide 6 Rel. 06/05/2019 © Savino, Sanchez — 2017, 2018

Outline

(« Copy Constructor >
« Composition: Objects as member of classes

 The this keyword
 Polymorphism sets to practice

* Functions Overloading
« Operators Overloading

Lecture 11_6.3 — Slide 7 Rel. 06/05/2019 © Savino, Sanchez — 2017, 2018

Copy Constructor

* A copy constructor is a special constructor that
makes possible defining an object as a copy of an
existing object of the same class.

« A copy constructor has only one formal parameter
that is the type of the class (the parameter may be a
reference to an object).

Lecture 11_6.3 — Slide 8 Rel. 06/05/2019 © Savino, Sanchez — 2017, 2018

Copy Constructor

* A copy constructor is a special constructor that
makes possible defining an object as a copy of an
existing object of the same class.

« A copy constructor has only one formal parameter
that is the type of the class (the parameter may be a
reference to an object).

Rectangle (const Rectangle &to copy);

Lecture 11_6.3 — Slide 9 Rel. 06/05/2019 © Savino, Sanchez — 2017, 2018

Copy Constructor

* In the definition it is possible to refer to any private
data of the object-to-copy directly.

— You must program what has to be copied!

Rectangle: :Rectangle (const Rectangle &to copy) {
this->m width = to copy.m width;
this->m length = to copy.m length;

}

Lecture 11_6.3 — Slide 10 Rel. 06/05/2019 © Savino, Sanchez — 2017, 2018

Copy Constructor

 The invocation requires then to pass the object to
be copied as parameter of the constructor

int main() {

Rectangle r3(2,8)
Rectangle r4(r3);

_— \

After this operation r4 has the same
width and length of r3

Lecture 11_6.3 — Slide 11 Rel. 06/05/2019 © Savino, Sanchez — 2017, 2018

Outline

« Copy Constructor

(« Composition: Objects as member of classes >
 The this keyword
 Polymorphism sets to practice

* Functions Overloading
« Operators Overloading

Lecture 11_6.3 — Slide 12 Rel. 06/05/2019 © Savino, Sanchez — 2017, 2018

Composition: Objects as member of classes

« Composition
— Sometimes referred to as a has-a relationship

— A class can have objects of other classes as
members

— Example

. AlarmClock object with a Time object as a
member

Lecture 11_6.3 — Slide 13 Rel. 06/05/2019 © Savino, Sanchez — 2017, 2018

Composition — 2

 Initializing member objects

— Member initializers pass arguments from the
object’s constructor through the member
initializer list to member-object constructors

— Member objects are constructed in the order in
which they are declared in the class definition

— If a member initializer is not provided

. The member object’s default constructor will
be called implicitly

Lecture 11_6.3 — Slide 14 Rel. 06/05/2019 © Savino, Sanchez — 2017, 2018

Composed objects

class Point {
public:
: : : X []
Point (int x, int vy); -
.] Y o
private: —
int Xy Y Point
b
class Rectangle {
public: 01: X
Rectangle (R
int x1, int vyl1,
int x2, int vy2); _X:
private: _p2: V:
Point pl, p2;
b L Rectangle

Lecture 11_6.3 — Slide 15 Rel. 06/05/2019 © Savino, Sanchez — 2017, 2018

Outline

« Copy Constructor
« Composition: Objects as member of classes

(The this keyword >
 Polymorphism sets to practice

* Functions Overloading
« Operators Overloading

Lecture 11_6.3 — Slide 16 Rel. 06/05/2019 © Savino, Sanchez — 2017, 2018

Using the this pointer

 Member functions know which object’s data
members to manipulate.

— Every object has access to its own address
through a pointer called this (a C++ keyword).

— An object’s this pointer is not part of the
object itself.

— The this pointer is passed (by the compiler)
as an implicit argument to each of the object’s
non-static member functions.

Lecture 11_6.3 — Slide 17 Rel. 06/05/2019 © Savino, Sanchez — 2017, 2018

this Example

#include <iostream>
using namespace std;

class Test

{

public:
Test (const int &value = 0);
vold print () const;

private:
int x;

} s

// default constructor

Lecture 11_6.3 — Slide 18 Rel. 06/05/2019

© Savino, Sanchez — 2017, 2018

this Example

Test::Test (const int &value)

{

X = value;
} // end constructor Test

vold Test::print () const
{
cout << " x = " <K x;
cout << "\n this->x = " << this->x;
cout << "\n(*this).x = " << (*this).x << endl;

int main ()

{
Test testObject(12); // instantiate and
testObject.print () ; // initialize testObject
return 0O;

} // end main

Lecture 11_6.3 — Slide 19 Rel. 06/05/2019 © Savino, Sanchez — 2017, 2018

Outline

« Copy Constructor
« Composition: Objects as member of classes
 The this keyword

(Polymorphism sets to practice >
* Functions Overloading
« Operators Overloading

Lecture 11_6.3 — Slide 20 Rel. 06/05/2019 © Savino, Sanchez — 2017, 2018

Polymorphism

« When a function in a derived class overrides a
function in a base class, the function to call is
determined by the type of the object.

 This decision is taken at run-time.

* In programming languages, polymorphism means
that some code or operations or objects behave
differently in different contexts.

Lecture 11_6.3 — Slide 21 Rel. 06/05/2019 © Savino, Sanchez — 2017, 2018

Polymorphism

As example, refer to the + (plus) operator in C++:

4+5 <-- integer addition
3.14 + 2.0 <-- floating point addition
“foo” + "bar" <-- string concatenation!

Lecture 11_6.3 — Slide 22 Rel. 06/05/2019 © Savino, Sanchez — 2017, 2018

Exercise

« We want to represent 2 types of employees as
classes in C++: a generic employee (class Employee)
and a manager (class Manager).

 For these employees, we want to store data, like
their name and salary.
 We require the functionality to expose the
employee's salary and name.
« Salaries are calculated to employees’ bank
accounts by an external officer.
A manager is an employee, with a higher salary

Lecture 11_6.3 — Slide 23 Rel. 06/05/2019 © Savino, Sanchez — 2017, 2018

Exercise

A AN o o

present 2 types of emplo
d [+: a generic employee (cl%

..‘-.\

Take your time and solve it!

- _/

Lecture 11_6.3 — Slide 24 Rel. 06/05/2019 © Savino, Sanchez — 2017, 2018

Solution

class Employee {
public:
string getName () const;
virtual float getSalary() const;
void setNameAndSalary (const string &name,
const float &salary);

protected:
string name;
float salary;

};

Lecture 11_6.3 — Slide 25 Rel. 06/05/2019 © Savino, Sanchez — 2017, 2018

Solution

class Employee {
public:
string getName () const;
virtual float getSalary() const;
void setNameAndSalary (const string &name,
const float &salary);

[protected :] » Less Restrictive
string _name; » Accessible by
float salary; .
— derived classes

};

Lecture 11_6.3 — Slide 26 Rel. 06/05/2019 © Savino, Sanchez — 2017, 2018

Solution

string Employee: :getName () const

{
return name;
}
float Employee:: getSalary() const
{
return salary;
}

Lecture 11_6.3 — Slide 27 Rel. 06/05/2019 © Savino, Sanchez — 2017, 2018

Solution

void Employee: :setNameAndSalary (const string
&name, const float é&salary) {
_name = name;
salary = salary;

Lecture 11_6.3 — Slide 28 Rel. 06/05/2019 © Savino, Sanchez — 2017, 2018

Solution

#include “Employee.h”

class Manager: public Employee({
public:
float getSalary () const;

};

No need to define again properties getName() and
setNameAndSalary(): they are inherited!

Lecture 11_6.3 — Slide 29 Rel. 06/05/2019 © Savino, Sanchez — 2017, 2018

Solution

#include “Manager.h”

float Manager::getSalary() const
{

return 3.5* salary;

}

Lecture 11_6.3 — Slide 30 Rel. 06/05/2019 © Savino, Sanchez — 2017, 2018

Exercise

 Program a function that calculates pays for 160 hours
of work per month.
« Can we use write one function working either fro
Employees and Managers?

Lecture 11_6.3 — Slide 31 Rel. 06/05/2019 © Savino, Sanchez — 2017, 2018

Exercise

- ction that calculates pay T
onth.
= - /

Take your time and solve it!

N /
Lecture 11_6.3 — Slide 32 Rel. 06/05/2019 © Savino, Sanchez — 2017, 2018

Solution

float calculatePay (Employee &e)

{
float pr = e.getSalary() ;

return pr*160;

Can we use this function too for Managers?

Lecture 11_6.3 — Slide 33 Rel. 06/05/2019 © Savino, Sanchez — 2017, 2018

Solution

Employee emp;
Manager man;
float empPay, manPay;

empPay = calculatePay (emp) ;
manPay = calculatePay (man) ;

Lecture 11_6.3 — Slide 34 Rel. 06/05/2019 © Savino, Sanchez — 2017, 2018

Solution

e How it works?

manPay = calculatePay (man) ;
1 “IS A” relationship
float calculatePay (Employee &e)

{

pr = e.getSalary(); — man.getSalary();
return pr*160;

A perfect match between the two virtual functions exist,
so they can be exchanged!

Lecture 11_6.3 — Slide 35 Rel. 06/05/2019 © Savino, Sanchez — 2017, 2018

Example

 What if the getSalary() function is not virtual?

Lecture 11_6.3 — Slide 36 Rel. 06/05/2019 © Savino, Sanchez — 2017, 2018

Example

class Employee {
public:
string getName () const;
float getSalary() const;
void setNameAndRate (const string &name,
const float &salary);

protected:
string name;
float salary;

};

Lecture 11_6.3 — Slide 37 Rel. 06/05/2019 © Savino, Sanchez — 2017, 2018

Example

 What happens?

manPay = calculatePay (man);
1 “IS A” relationship

float calculatePay (Employee e)
{

pr = e.getSalaiy(); Xman-getSalary{)-

return pr*160;

We will always get the lower pay rate!

Lecture 11_6.3 — Slide 38 Rel. 06/05/2019 © Savino, Sanchez — 2017, 2018

Outline

« Copy Constructor
« Composition: Objects as member of classes
 The this keyword
 Polymorphism sets to practice

(* Functions Overloading >
« Operators Overloading

Lecture 11_6.3 — Slide 39 Rel. 06/05/2019 © Savino, Sanchez — 2017, 2018

Functions Overloading

 You can have multiple definitions for the same
function name in the same scope.

* The definition of the function must differ from
each other by the types and/or the number of
arguments in the argument list.

 The idea is the same applied to multiple
constructors

 You can not overload function declarations that
differ only by return type.

Lecture 11_6.3 — Slide 40 Rel. 06/05/2019 © Savino, Sanchez — 2017, 2018

Functions Overloading

class Rectangle {
public:

Rectangle () ;

Rectangle (const double &w,

const double &1);

Rectangle (const double &w 1);

~Rectangle () {1}
vold setW(const double &w);
vold setW(const 1nt &w); overloaded
vold setL (const double &1); .

(:::::>> functions

vold setlL (const 1int &1);

Lecture 11_6.3 — Slide 41 Rel. 06/05/2019 © Savino, Sanchez — 2017, 2018

Functions Overloading

int main ()

Rectangle rb, ro6;
rb5.setW(2) ;
r5.setlL (4) ;

Lecture 11_6.3 — Slide 42 Rel. 06/05/2019 © Savino, Sanchez — 2017, 2018

Outline

« Copy Constructor

« Composition: Objects as member of classes
 The this keyword

 Polymorphism sets to practice

* Functions Overloading
(« Operators Overloading >

Lecture 11_6.3 — Slide 43 Rel. 06/05/2019 © Savino, Sanchez — 2017, 2018

Operators Overloading

 What is an operator?
 For each basic types you (might) have already

seen.
1. Assignment operator (=)
2. Arithmetic operators (+, -, *,/, %)

3. Compound assignment (+=, -=, *=, [=, %=, >>=, <<=, &=,
A=, =)

4. Increment and decrement (++, --)

5. Relational and comparison operators (==, I=, >, <, >=,
<=)

6. Logical operators (!, &&, ||)

7. Conditional ternary operator (?)

8. Comma operator (,)

9. Bitwise operators (&, |, A, ~, <<, >>)

10....

Lecture 11_6.3 — Slide 44 Rel. 06/05/2019 © Savino, Sanchez — 2017, 2018

Operators Overloading

* If | need that for my own classes, would it make
sense?

int main() {
ééétangle rd (r3);
gectangle rb5, ro6;
éé.= r5 + r4;

ro.uguale (r5.somma (r4));

J

Lecture 11_6.3 — Slide 45 Rel. 06/05/2019 © Savino, Sanchez — 2017, 2018

Operators Overloading

* If | need that for my own classes, would it make
sense?

int main ()
Rectangle r4 (r3);

Rectangle rb, ro6;

éé.= r5 + r4; ’?

Lecture 11_6.3 — Slide 46 Rel. 06/05/2019 © Savino, Sanchez — 2017, 2018

Operators Overloading

 Not all operators make sense applied to classes

(and objects).
« Still you can implement what you might need

Rectangle = Rectangle W (Rectangle + Rectangle
4)
Rectangle == Rectangle J
Rectangle != Rectangle
Rectangle++
4 W (postfix)
++Rectangle
(prefix)

Lecture 11_6.3 — Slide 47 Rel. 06/05/2019 © Savino, Sanchez — 2017, 2018

Operators Overloading (How to)

* You need to declare them in the Class definition as
(public) methods.

class Rectangle {
public:

Rectangle operator+(const Rectangle &to be added);
void operator=(const Rectangle &to be assigned);
const Rectangle& operator++(); // prefix

const Rectangle operator++(int); // postfix
bool operator==(const Rectangle &to be compared);
bool operator!=(const Rectangle &to be compared);

Lecture 11_6.3 — Slide 48 Rel. 06/05/2019 © Savino, Sanchez — 2017, 2018

Operators Overloading (How to)

* You need to declare them in the Class definition as
(public) methods.

Wait... This can be further generalized!

v

Lecture 11_6.3 — Slide 49 Rel. 06/05/2019 © Savino, Sanchez — 2017, 2018

Operators Overloading (How to)

« A generic T class can implement its own operators
to fulfil any design requirements.

class T {
public:

T operator+(const T &to be added);

void operator=(const T &to be assigned);
const T& operator++(); // prefix

const T operator++(int); // postfix
bool operator==(const T &to be compared);
bool operator!=(const T &to be compared);

Lecture 11_6.3 — Slide 50 Rel. 06/05/2019 © Savino, Sanchez — 2017, 2018

Operators Overloading (How to)

« A generic T class can implement its own operators
to fulfil any design requirements.

T is a general class you are willing to create!

v

Lecture 11_6.3 — Slide 51 Rel. 06/05/2019 © Savino, Sanchez — 2017, 2018

Operators Overloading (How to)

 Their form is (almost) forced to the semantic and
syntax already defined by the language

class T {
public:

T operator+(const T &to be added);

void operator=(const T &to be assigned);
const T& operator++(); // prefix

const T operator++(int); // postfix
bool operator==(const T &to be compared);
bool operator!=(const T &to be compared);

Lecture 11_6.3 — Slide 52 Rel. 06/05/2019 © Savino, Sanchez — 2017, 2018

Operators Overloading (How to)

* Notice the const keyword in the parameters...
* ... And the referenced parameters...
* ... And all the return types

class T {
public:

T operator+(const T &to be added);

void operator=(const T &to be assigned);
const T& operator++(); // prefix

const T operator++(int); // postfix
bool operator==(const T &to be compared);
bool operator!=(const T &to be compared);

Lecture 11_6.3 — Slide 53 Rel. 06/05/2019 © Savino, Sanchez — 2017, 2018

Operators Overloading (How to)

* In the implementation private members of
parameters can be accessible.

vold Rectangle::operator=(const Rectangle
&to be assigned) {

this->m width|= to be assigned.m width;
this->m length|= to be assigned.m length;

Rectangle Rectangle: :operator+ (const Rectangle
&to be added)

Rectangle output;

output.m width = |this->m width|+ to be added.m width;
output.m length Jj%ﬁf§f§ﬁffgﬁg%ﬁ-+

to be added.m length;
return output;

}

}

Lecture 11_6.3 — Slide 54 Rel. 06/05/2019 © Savino, Sanchez — 2017, 2018

Operators Overloading (How to)

e Methods can call each other.

bool Rectangle: :operator==(const Rectangle
&to be compared) {
return ((m width == to be compared.m width) &&
(m length == to be compared.m length));
}
bool Rectangle::operator!=(const Rectangle
&to be compared) {
return ! (*this == to be compared);
} N

Notice the (*this) usage and how !=is
implemented through ==

Lecture 11_6.3 — Slide 55 Rel. 06/05/2019 © Savino, Sanchez — 2017, 2018

Operators Overloading (How to)

 They should mimic the original operator behavior
as much as possible

const Rectangle& Rectangle::operator++() {
m width++;
m length++;
return *this;

const Rectangle Rect
Rectangle R(*this);
++ (*this);
return R;

) Notice the *this usage here: you are
returning a new object "copy” of the
actual one

soperator++(int) {

Lecture 11_6.3 — Slide 56 Rel. 06/05/2019 © Savino, Sanchez — 2017, 2018

Operators Overloading (How to)

 They should mimic the original operator behavior
as much as possible

const Rectangle& Rectangle::operator++() {
m width++;
m length++;
return *this;

}

const Rectangle Rectangle::operator++(int) {
Rectangle R(*this);
++ (*this);

return R;
}

Notice both the "copy before increment” and
the re-usage of prefix version to shorten up

the code
Lecture 11_6.3 — Slide 57 Rel. 06/05/2019 © Savino, Sanchez — 2017, 2018

Manble ABTioxu, KannHkoBmn4yckuin pamoH, Pecnybnukn benapycb

