
Lecture
11_6.3

Copy Constructor
& Other Advanced

features

Alessandro Savino
Politecnico di Torino (Italy)
alessandro.savino@polito.it

www.testgroup.polito.it

http://www.testgroup.polito.it/

Lecture 11_6.3 – Slide 2 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

License Information

This work is licensed under the
Creative Commons BY-NC

License

To view a copy of the license, visit:
http://creativecommons.org/licenses/by-nc/3.0/legalcode

Lecture 11_6.3 – Slide 3 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

Disclaimer

• We disclaim any warranties or representations as
to the accuracy or completeness of this material.

• Materials are provided “as is” without warranty of
any kind, either express or implied, including
without limitation, warranties of merchantability,
fitness for a particular purpose, and non-
infringement.

• Under no circumstances shall we be liable for any
loss, damage, liability or expense incurred or
suffered which is claimed to have resulted from
use of this material.

Lecture 11_6.3 – Slide 4 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

Goal

– This lecture presents a deeper view about
C++ classes and objects

Lecture 11_6.3 – Slide 5 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

Prerequisites

– A basic knowledge about classes

Lecture 11_6.3 – Slide 6 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

Homework

– None

Lecture 11_6.3 – Slide 7 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

Outline

• Copy Constructor
• Composition: Objects as member of classes
• The this keyword
• Polymorphism sets to practice
• Functions Overloading
• Operators Overloading

Lecture 11_6.3 – Slide 8 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

• A copy constructor is a special constructor that
makes possible defining an object as a copy of an
existing object of the same class.

• A copy constructor has only one formal parameter
that is the type of the class (the parameter may be a
reference to an object).

Copy Constructor

Lecture 11_6.3 – Slide 9 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

• A copy constructor is a special constructor that
makes possible defining an object as a copy of an
existing object of the same class.

• A copy constructor has only one formal parameter
that is the type of the class (the parameter may be a
reference to an object).

Rectangle(const Rectangle &to_copy);

Copy Constructor

Lecture 11_6.3 – Slide 10 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

• In the definition it is possible to refer to any private
data of the object-to-copy directly.
– You must program what has to be copied!

Rectangle::Rectangle(const Rectangle &to_copy) {
this->m_width = to_copy.m_width;
this->m_length = to_copy.m_length;

}

Copy Constructor

Lecture 11_6.3 – Slide 11 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

• The invocation requires then to pass the object to
be copied as parameter of the constructor

int main() {
...
Rectangle r3(2,8)
Rectangle r4(r3);
...

}

Copy Constructor

After this operation r4 has the same
width and length of r3

Lecture 11_6.3 – Slide 12 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

Outline

• Copy Constructor
• Composition: Objects as member of classes
• The this keyword
• Polymorphism sets to practice
• Functions Overloading
• Operators Overloading

Lecture 11_6.3 – Slide 13 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

Composition: Objects as member of classes

• Composition
– Sometimes referred to as a has-a relationship
– A class can have objects of other classes as

members
– Example

. AlarmClock object with a Time object as a
member

Lecture 11_6.3 – Slide 14 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

• Initializing member objects
– Member initializers pass arguments from the

object’s constructor through the member
initializer list to member-object constructors

– Member objects are constructed in the order in
which they are declared in the class definition

– If a member initializer is not provided
. The member object’s default constructor will

be called implicitly

Composition – 2

Lecture 11_6.3 – Slide 15 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

_x:
_y:

Point

x:
y:_p1:

_x:
_y:_p2:

Rectangle

class Point {
public:

Point(int x, int y);
private:

int _x, _y;
};

class Rectangle {
public:

Rectangle(
int x1, int y1,
int x2, int y2);

private:
Point _p1,_p2;

};

Composed objects

Lecture 11_6.3 – Slide 16 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

Outline

• Copy Constructor
• Composition: Objects as member of classes
• The this keyword
• Polymorphism sets to practice
• Functions Overloading
• Operators Overloading

Lecture 11_6.3 – Slide 17 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

• Member functions know which object’s data
members to manipulate.
– Every object has access to its own address

through a pointer called this (a C++ keyword).
– An object’s this pointer is not part of the

object itself.
– The this pointer is passed (by the compiler)

as an implicit argument to each of the object’s
non-static member functions.

Using the this pointer

Lecture 11_6.3 – Slide 18 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

this Example

#include <iostream>
using namespace std;

class Test
{
public:

Test(const int &value = 0); // default constructor
void print() const;

private:
int _x;

};

Lecture 11_6.3 – Slide 19 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

this Example

Test::Test(const int &value)
{

x = value;
} // end constructor Test

void Test::print() const
{

cout << " x = " << x;
cout << "\n this->x = " << this->x;
cout << "\n(*this).x = " << (*this).x << endl;

}

int main()
{

Test testObject(12); // instantiate and
testObject.print(); // initialize testObject
return 0;

} // end main

Lecture 11_6.3 – Slide 20 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

Outline

• Copy Constructor
• Composition: Objects as member of classes
• The this keyword
• Polymorphism sets to practice
• Functions Overloading
• Operators Overloading

Lecture 11_6.3 – Slide 21 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

• When a function in a derived class overrides a
function in a base class, the function to call is
determined by the type of the object.
• This decision is taken at run-time.

• In programming languages, polymorphism means
that some code or operations or objects behave
differently in different contexts.

Polymorphism

Lecture 11_6.3 – Slide 22 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

• As example, refer to the + (plus) operator in C++:

• 4 + 5 <-- integer addition
• 3.14 + 2.0 <-- floating point addition
• “foo” + "bar" <-- string concatenation!

Polymorphism

Lecture 11_6.3 – Slide 23 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

• We want to represent 2 types of employees as
classes in C++: a generic employee (class Employee)
and a manager (class Manager).
• For these employees, we want to store data, like

their name and salary.
• We require the functionality to expose the

employee's salary and name.
• Salaries are calculated to employees’ bank

accounts by an external officer.
• A manager is an employee, with a higher salary

Exercise

Lecture 11_6.3 – Slide 24 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

• We want to represent 2 types of employees as
classes in C++: a generic employee (class Employee)
and a manager (class Manager).
• For these employees, we want to store data, like

their name and salary.
• We require the functionality to expose the

employee's salary and name.
• Salaries are calculated to employees’ bank

accounts by an external officer.
• A manager is an employee, with a higher salary

Exercise

Take your time and solve it!

Lecture 11_6.3 – Slide 25 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

class Employee {
public:

string getName() const;
virtual float getSalary() const;
void setNameAndSalary(const string &name,

const float &salary);

protected:
string _name;
float _salary;

};

Solution

Lecture 11_6.3 – Slide 26 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

class Employee {
public:

string getName() const;
virtual float getSalary() const;
void setNameAndSalary(const string &name,

const float &salary);

protected:
string _name;
float _salary;

};

Solution

Less Restrictive

Accessible by
derived classes

Lecture 11_6.3 – Slide 27 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

string Employee::getName() const
{

return _name;
}

float Employee:: getSalary() const
{

return _salary;
}

Solution

Lecture 11_6.3 – Slide 28 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

void Employee::setNameAndSalary(const string
&name, const float &salary) {

_name = name;
_salary = salary;

}

Solution

Lecture 11_6.3 – Slide 29 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

#include “Employee.h”

class Manager: public Employee{
public:

float getSalary() const;
};

No need to define again properties getName() and
setNameAndSalary(): they are inherited!

Solution

Lecture 11_6.3 – Slide 30 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

#include “Manager.h”

float Manager::getSalary() const
{

return 3.5*_salary;
}

Solution

Lecture 11_6.3 – Slide 31 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

• Program a function that calculates pays for 160 hours
of work per month.
• Can we use write one function working either fro

Employees and Managers?

Exercise

Lecture 11_6.3 – Slide 32 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

• Program a function that calculates pays for 160 hours
of work per month.
• Can we use write one function working either fro

Employees and Managers?

Exercise

Take your time and solve it!

Lecture 11_6.3 – Slide 33 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

float calculatePay(Employee &e)
{

float pr = e.getSalary();
return pr*160;

}

Can we use this function too for Managers?

Solution

Lecture 11_6.3 – Slide 34 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

Employee emp;
Manager man;
float empPay, manPay;
…
empPay = calculatePay(emp);
manPay = calculatePay(man);

Solution

Lecture 11_6.3 – Slide 35 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

• How it works?

manPay = calculatePay(man);
“IS A” relationship

float calculatePay(Employee &e)
{

pr = e.getSalary(); man.getSalary();
return pr*160;

}

A perfect match between the two virtual functions exist,
so they can be exchanged!

Solution

Lecture 11_6.3 – Slide 36 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

• What if the getSalary() function is not virtual?

Example

Lecture 11_6.3 – Slide 37 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

class Employee {
public:

string getName() const;
float getSalary() const;
void setNameAndRate(const string &name,

const float &salary);

protected:
string _name;
float _salary;

};

Example

Lecture 11_6.3 – Slide 38 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

• What happens?

manPay = calculatePay(man);
“IS A” relationship

float calculatePay(Employee e)
{

pr = e.getSalary(); X man.getSalary();
return pr*160;

}

We will always get the lower pay rate!

Example

Lecture 11_6.3 – Slide 39 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

Outline

• Copy Constructor
• Composition: Objects as member of classes
• The this keyword
• Polymorphism sets to practice
• Functions Overloading
• Operators Overloading

Lecture 11_6.3 – Slide 40 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

Functions Overloading

• You can have multiple definitions for the same
function name in the same scope.
• The definition of the function must differ from

each other by the types and/or the number of
arguments in the argument list.

• The idea is the same applied to multiple
constructors

• You can not overload function declarations that
differ only by return type.

Lecture 11_6.3 – Slide 41 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

Functions Overloading

class Rectangle {
public:

Rectangle();
Rectangle(const double &w,

const double &l);
Rectangle(const double &w_l);
~Rectangle() {};
void setW(const double &w);
void setW(const int &w);
void setL(const double &l);
void setL(const int &l);

...

overloaded
functions

Lecture 11_6.3 – Slide 42 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

Functions Overloading

int main() {
...
Rectangle r5, r6;
r5.setW(2);
r5.setL(4);

}

Lecture 11_6.3 – Slide 43 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

Outline

• Copy Constructor
• Composition: Objects as member of classes
• The this keyword
• Polymorphism sets to practice
• Functions Overloading
• Operators Overloading

Lecture 11_6.3 – Slide 44 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

Operators Overloading

• What is an operator?
• For each basic types you (might) have already

seen:
1. Assignment operator (=)
2. Arithmetic operators (+, -, *, /, %)
3. Compound assignment (+=, -=, *=, /=, %=, >>=, <<=, &=,

^=, |=)
4. Increment and decrement (++, --)
5. Relational and comparison operators (==, !=, >, <, >=,

<=)
6. Logical operators (!, &&, ||)
7. Conditional ternary operator (?)
8. Comma operator (,)
9. Bitwise operators (&, |, ^, ~, <<, >>)
10....

Lecture 11_6.3 – Slide 45 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

Operators Overloading

• If I need that for my own classes, would it make
sense?

int main() {
...
Rectangle r4(r3);
…
Rectangle r5, r6;
...
r6 = r5 + r4;
r6.uguale(r5.somma(r4));

}

Lecture 11_6.3 – Slide 46 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

Operators Overloading

• If I need that for my own classes, would it make
sense?

int main() {
...
Rectangle r4(r3);
…
Rectangle r5, r6;
...
r6 = r5 + r4;

}
?

Lecture 11_6.3 – Slide 47 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

Operators Overloading

• Not all operators make sense applied to classes
(and objects).
• Still you can implement what you might need

Rectangle = Rectangle Rectangle + Rectangle

Rectangle == Rectangle

Rectangle != Rectangle
Rectangle++

(postfix)
++Rectangle

(prefix)

Lecture 11_6.3 – Slide 48 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

Operators Overloading (How to)

• You need to declare them in the Class definition as
(public) methods.

class Rectangle {
public:

...
Rectangle operator+(const Rectangle &to_be_added);
void operator=(const Rectangle &to_be_assigned);
const Rectangle& operator++(); // prefix
const Rectangle operator++(int); // postfix
bool operator==(const Rectangle &to_be_compared);
bool operator!=(const Rectangle &to_be_compared);
...

}

Lecture 11_6.3 – Slide 49 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

Operators Overloading (How to)

• You need to declare them in the Class definition as
(public) methods.

class Rectangle {
public:

...
Rectangle operator+(const Rectangle &to_be_added);
void operator=(const Rectangle &to_be_assigned);
Rectangle operator++();
Rectangle operator++(int);
bool operator==(const Rectangle &to_be_compared);
bool operator!=(const Rectangle &to_be_compared);
...

}

Wait... This can be further generalized!

Lecture 11_6.3 – Slide 50 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

Operators Overloading (How to)

• A generic T class can implement its own operators
to fulfil any design requirements.

class T {
public:

...
T operator+(const T &to_be_added);
void operator=(const T &to_be_assigned);
const T& operator++(); // prefix
const T operator++(int); // postfix
bool operator==(const T &to_be_compared);
bool operator!=(const T &to_be_compared);
...

}

Lecture 11_6.3 – Slide 51 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

Operators Overloading (How to)

• A generic T class can implement its own operators
to fulfil any design requirements.

class T {
public:

...
T operator+(const T &to_be_added);
void operator=(const T &to_be_assigned);
T operator++();
T operator++(int);
bool operator==(const T &to_be_compared);
bool operator!=(const T &to_be_compared);
...

}

T is a general class you are willing to create!

Lecture 11_6.3 – Slide 52 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

Operators Overloading (How to)

• Their form is (almost) forced to the semantic and
syntax already defined by the language

class T {
public:

...
T operator+(const T &to_be_added);
void operator=(const T &to_be_assigned);
const T& operator++(); // prefix
const T operator++(int); // postfix
bool operator==(const T &to_be_compared);
bool operator!=(const T &to_be_compared);
...

}

Lecture 11_6.3 – Slide 53 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

Operators Overloading (How to)

• Notice the const keyword in the parameters...
• ... And the referenced parameters...
• ... And all the return types

class T {
public:

...
T operator+(const T &to_be_added);
void operator=(const T &to_be_assigned);
const T& operator++(); // prefix
const T operator++(int); // postfix
bool operator==(const T &to_be_compared);
bool operator!=(const T &to_be_compared);
...

}

Lecture 11_6.3 – Slide 54 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

Operators Overloading (How to)

• In the implementation private members of
parameters can be accessible.

void Rectangle::operator=(const Rectangle
&to_be_assigned) {
this->m_width = to_be_assigned.m_width;
this->m_length = to_be_assigned.m_length;

}

Rectangle Rectangle::operator+(const Rectangle
&to_be_added) {

Rectangle output;
output.m_width = this->m_width + to_be_added.m_width;
output.m_length = this->m_length +

to_be_added.m_length;
return output;

}

Lecture 11_6.3 – Slide 55 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

Operators Overloading (How to)

• Methods can call each other.

bool Rectangle::operator==(const Rectangle
&to_be_compared) {

return ((m_width == to_be_compared.m_width) &&
(m_length == to_be_compared.m_length));

}

bool Rectangle::operator!=(const Rectangle
&to_be_compared) {

return !(*this == to_be_compared);
}

Notice the (*this) usage and how != is
implemented through ==

Lecture 11_6.3 – Slide 56 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

Operators Overloading (How to)

• They should mimic the original operator behavior
as much as possible

const Rectangle& Rectangle::operator++() {
m_width++;
m_length++;
return *this;

}

const Rectangle Rectangle::operator++(int) {
Rectangle R(*this);
++(*this);
return R;

} Notice the *this usage here: you are
returning a new object ”copy” of the

actual one

Lecture 11_6.3 – Slide 57 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

Operators Overloading (How to)

• They should mimic the original operator behavior
as much as possible

const Rectangle& Rectangle::operator++() {
m_width++;
m_length++;
return *this;

}

const Rectangle Rectangle::operator++(int) {
Rectangle R(*this);
++(*this);
return R;

}

Notice both the ”copy before increment” and
the re-usage of prefix version to shorten up

the code

Lecture 11_6.3 – Slide 58 Rel. 06/05/2019 © Savino, Sanchez – 2017, 2018

Малые Автюхи, Калинковичский район, Республики Беларусь

