
Lecture
11_6.2

Reference Variables
and Const Type

Qualifier

Alessandro Savino
Politecnico di Torino (Italy)
alessandro.savino@polito.it

www.testgroup.polito.it

Lecture 11_6.2 – Slide 2 Rel. 05/04/2017 © Savino, Sanchez - 2017

License Information

This work is licensed under the
Creative Commons BY-NC

License

To view a copy of the license, visit:
http://creativecommons.org/licenses/by-nc/3.0/legalcode

Lecture 11_6.2 – Slide 3 Rel. 05/04/2017 © Savino, Sanchez - 2017

Disclaimer

• We disclaim any warranties or representations as
to the accuracy or completeness of this material.

• Materials are provided “as is” without warranty of
any kind, either express or implied, including
without limitation, warranties of merchantability,
fitness for a particular purpose, and non-
infringement.

• Under no circumstances shall we be liable for any
loss, damage, liability or expense incurred or
suffered which is claimed to have resulted from
use of this material.

Lecture 11_6.2 – Slide 4 Rel. 05/04/2017 © Savino, Sanchez - 2017

Goal

– This lecture presents a deeper view about
C++ classes and objects

Lecture 11_6.2 – Slide 5 Rel. 05/04/2017 © Savino, Sanchez - 2017

Prerequisites

– A basic knowledge about classes

Lecture 11_6.2 – Slide 6 Rel. 05/04/2017 © Savino, Sanchez - 2017

Homework

– None

Lecture 11_6.2 – Slide 7 Rel. 05/04/2017 © Savino, Sanchez - 2017

Outline

• Reference Variables
• Reference vs Pointers
• Const Type qualifier

Lecture 11_6.2 – Slide 8 Rel. 05/04/2017 © Savino, Sanchez - 2017

• A reference variables is an alias for its
corresponding argument in a function call.
– int &value
void f(int& r) {

r=27;

};

int main() {

int i=10;

f(i);

return i;

};

Parameters passed by reference

Lecture 11_6.2 – Slide 9 Rel. 05/04/2017 © Savino, Sanchez - 2017

void f(int& r) {

r=27;

};

int main() {

int i=10;

f(i);

return i;

}; Machine	
code

Stack…
10

Parameters passed by reference

Lecture 11_6.2 – Slide 10 Rel. 05/04/2017 © Savino, Sanchez - 2017

void f(int& r) {

r=27;

};

int main() {

int i=10;

f(i);

return i;

}; Machine
code

Stack…
1010

Parameters passed by reference

Lecture 11_6.2 – Slide 11 Rel. 05/04/2017 © Savino, Sanchez - 2017

void f(int& r) {

r=27;

};

int main() {

int i=10;

f(i);

return i;

}; Machine	
code

Stack…
1010

<Return	addrs>

Parameters passed by reference

Lecture 11_6.2 – Slide 12 Rel. 05/04/2017 © Savino, Sanchez - 2017

void f(int& r) {

r=27;

};

int main() {

int i=10;

f(i);

return i;

}; Machine
code

Stack…
10

<Return	addrs>

Parameters passed by reference

27

Lecture 11_6.2 – Slide 13 Rel. 05/04/2017 © Savino, Sanchez - 2017

void f(int& r) {

r=27;

};

int main() {

int i=10;

f(i);

return i;

}; Machine
code

Stack…
1027

<Return	addrs>

Parameters passed by reference

Lecture 11_6.2 – Slide 14 Rel. 05/04/2017 © Savino, Sanchez - 2017

void f(int& r) {

r=27;

};

int main() {

int i=10;

f(i);

return i;

}; Machine
code

Stack…
1027

Parameters passed by reference

Lecture 11_6.2 – Slide 15 Rel. 05/04/2017 © Savino, Sanchez - 2017

Outline

• Reference Variables
• Reference vs Pointers
• Const Type qualifier

Lecture 11_6.2 – Slide 16 Rel. 05/04/2017 © Savino, Sanchez - 2017

Reference vs Pointers

1. A pointer can be re-assigned while a reference
cannot, and must be assigned at initialization.

int var;

int *p_to_var;

int &ref_to_var;

Lecture 11_6.2 – Slide 17 Rel. 05/04/2017 © Savino, Sanchez - 2017

Reference vs Pointers

1. A pointer can be re-assigned while a reference
cannot, and must be assigned at initialization.

int var;

int *p_to_var;

int &ref_to_var;

Valid

Lecture 11_6.2 – Slide 18 Rel. 05/04/2017 © Savino, Sanchez - 2017

Reference vs Pointers

1. A pointer can be re-assigned while a reference
cannot, and must be assigned at initialization.

int var;

int *p_to_var;

int &ref_to_var;
Valid

Lecture 11_6.2 – Slide 19 Rel. 05/04/2017 © Savino, Sanchez - 2017

Reference vs Pointers

1. A pointer can be re-assigned while a reference
cannot, and must be assigned at initialization.

int var;

int *p_to_var;

int &ref_to_var; Not Valid

Lecture 11_6.2 – Slide 20 Rel. 05/04/2017 © Savino, Sanchez - 2017

Reference vs Pointers

1. A pointer can be re-assigned while a reference
cannot, and must be assigned at initialization.

int var;

int *p_to_var;

int &ref_to_var = var; Valid

Lecture 11_6.2 – Slide 21 Rel. 05/04/2017 © Savino, Sanchez - 2017

Reference vs Pointers

2. You can have pointers to pointers to pointers
offering extra levels of indirection. Whereas
references only offer one level of indirection.

int var;

int *p_to_var = &var;

int **p_to_p_to_var = &p_to_var;

Lecture 11_6.2 – Slide 22 Rel. 05/04/2017 © Savino, Sanchez - 2017

Reference vs Pointers

3. Pointer can be assigned nullptr directly, whereas
reference cannot.

int *p_to_var = nullptr;

int &ref_to_var = nullptr;

Lecture 11_6.2 – Slide 23 Rel. 05/04/2017 © Savino, Sanchez - 2017

Reference vs Pointers

4. Pointers can iterate over an array, you can use ++
to go to the next item that a pointer is pointing to,
and + X to go to the X-th element. This is no matter
what size the object is that the pointer points to.

5. A pointer needs to be dereferenced with * to
access the memory location it points to, whereas a
reference can be used directly. A pointer to a
class/struct uses -> to access it's members
whereas a reference uses a ..

Lecture 11_6.2 – Slide 24 Rel. 05/04/2017 © Savino, Sanchez - 2017

Reference vs Pointers

4. Pointers can iterate over an array, you can use ++
to go to the next item that a pointer is pointing to,
and + X to go to the X-th element. This is no matter
what size the object is that the pointer points to.

5. A pointer needs to be dereferenced with * to
access the memory location it points to, whereas a
reference can be used directly. A pointer to a
class/struct uses -> to access it's members
whereas a reference uses a .

Lecture 11_6.2 – Slide 25 Rel. 05/04/2017 © Savino, Sanchez - 2017

Reference vs Pointers

• Most important of all: pointers are memory location
with their own address and space. References do
not.

int *p_to_var; // 4/8 bytes memory

int &ref_to_var; // just a label

Lecture 11_6.2 – Slide 26 Rel. 05/04/2017 © Savino, Sanchez - 2017

Reference vs Pointers

• Question: what is the advantage of all that?

void swap(int *a, int
*b) {

int temp = 0;

temp = *a;

*a = *b;

*b = temp;

}

void swap(int &a, int
&b) {

int temp = 0;

temp = a;

a = b;

b = temp;

}

Lecture 11_6.2 – Slide 27 Rel. 05/04/2017 © Savino, Sanchez - 2017

Outline

• Reference Variables
• Reference vs Pointers
• Const Type qualifier

Lecture 11_6.2 – Slide 28 Rel. 05/04/2017 © Savino, Sanchez - 2017

Const Type qualifier

• Using the keyword const to prevent const objects from
getting mutated

• Const is a very powerful keyword, allowing you to
an advance control of your code.
– Const member functions
– Const parameters
– Const references

• Extras: https://isocpp.org/wiki/faq/const-
correctness

Lecture 11_6.2 – Slide 29 Rel. 05/04/2017 © Savino, Sanchez - 2017

Const member functions

• A const member function is a member function that
guarantees it will not modify the object or call any non-
const member functions (as they may modify the
object).

class Rectangle {
public:

…
double getW() const;
double getL() const;

double getArea() const;
double getPerimeter() const;

Lecture 11_6.2 – Slide 30 Rel. 05/04/2017 © Savino, Sanchez - 2017

Const member functions

• We simply append the const keyword to the function
prototype

class Rectangle {
public:

…
double getW() const;
double getL() const;

double getArea() const;
double getPerimeter() const;

Lecture 11_6.2 – Slide 31 Rel. 05/04/2017 © Savino, Sanchez - 2017

Const member functions

• We simply append the const keyword to the function
prototype

class Rectangle {
public:

…
double getW() const;
double getL() const;

double getArea() const;
double getPerimeter() const;

Since they are just getter for
internal data and calculation, it

means they don’t modify a
Rectangle object.

Lecture 11_6.2 – Slide 32 Rel. 05/04/2017 © Savino, Sanchez - 2017

Const member functions

• We need to repeat it in the implementation too

…

double Rectangle::getArea() const {
return m_width * m_length;

}

…

Lecture 11_6.2 – Slide 33 Rel. 05/04/2017 © Savino, Sanchez - 2017

Const member functions

• We need to repeat it in the implementation too

…

double Rectangle::getArea() const {
return m_width * m_length;

}

…
Notice where the const keyword

was written

Lecture 11_6.2 – Slide 34 Rel. 05/04/2017 © Savino, Sanchez - 2017

Const member functions

• We need to repeat it in the implementation too

…

double Rectangle::getArea() const {
return m_width * m_length;

}

…
Notice the operation does not

change the object

Lecture 11_6.2 – Slide 35 Rel. 05/04/2017 © Savino, Sanchez - 2017

Const parameters

• You can set as cost any parameter of member function
– It means you expect not to modify it

class Rectangle {

public:

Rectangle();

Rectangle(const double w, const
double l);

...

Lecture 11_6.2 – Slide 36 Rel. 05/04/2017 © Savino, Sanchez - 2017

Const parameters

• You can set as cost any parameter of member function
– It means you expect not to modify it

class Rectangle {

public:

Rectangle();

Rectangle(const double w, const
double l);

...

Does it make any sense?

Lecture 11_6.2 – Slide 37 Rel. 05/04/2017 © Savino, Sanchez - 2017

Const parameters

• You can set as cost any parameter of member function
– It means you expect not to modify it

class Rectangle {

public:

Rectangle();

Rectangle(const double w, const
double l);

...
Actually, since they are passed by value, it only
serves as reminder that they won’t be touched...

Lecture 11_6.2 – Slide 38 Rel. 05/04/2017 © Savino, Sanchez - 2017

Const references

• Const references are meant to replace passing the
parameter by value to avoid the copy of it
– Still you must guarantee that no further modification

will be done!

class Rectangle {
public:

...
void setW(const double &w);
void setL(const double &l);

Lecture 11_6.2 – Slide 39 Rel. 05/04/2017 © Savino, Sanchez - 2017

Const references

• You must keep the const in the implementation...

void Rectangle::setW(const double &w) {
m_width = w;

}

void Rectangle::setL(const double &l) {
m_length = l;

}

Lecture 11_6.2 – Slide 40 Rel. 05/04/2017 © Savino, Sanchez - 2017

Const references

• You must keep the const in the implementation...

void Rectangle::setW(const double &w) {
m_width = w;

}

void Rectangle::setL(const double &l) {
m_length = l;

}

Be aware that in the implementation of the
function you can resort only to const methods of

the object!

Lecture 11_6.2 – Slide 41 Rel. 05/04/2017 © Savino, Sanchez - 2017

Малые Автюхи, Калинковичский район, Республики Беларусь

