
Lecture
11_6.1

Constructors, 
Destructors and 
Abstract Classes

Alessandro SAVINO
Politecnico di Torino (Italy) 
alessandro.savino@polito.it

www.testgroup.polito.it



Lecture 11_6.1 – Slide 2 Rel. 24/03/2017 © Savino, Sanchez - 2017

License Information

This work is licensed under the 
Creative Commons BY-NC

License

To view a copy of the license, visit:
http://creativecommons.org/licenses/by-nc/3.0/legalcode



Lecture 11_6.1 – Slide 3 Rel. 24/03/2017 © Savino, Sanchez - 2017

Disclaimer

• We disclaim any warranties or representations as 
to the accuracy or completeness of this material.

• Materials are provided “as is” without warranty of 
any kind, either express or implied, including 
without limitation, warranties of merchantability, 
fitness for a particular purpose, and non-
infringement. 

• Under no circumstances shall we be liable for any 
loss, damage, liability or expense incurred or 
suffered which is claimed to have resulted from 
use of this material. 



Lecture 11_6.1 – Slide 4 Rel. 24/03/2017 © Savino, Sanchez - 2017

Goal

– This lecture presents a deeper view about 
C++ classes and objects



Lecture 11_6.1 – Slide 5 Rel. 24/03/2017 © Savino, Sanchez - 2017

Prerequisites

– A basic knowledge about classes



Lecture 11_6.1 – Slide 6 Rel. 24/03/2017 © Savino, Sanchez - 2017

Homework

– None



Lecture 11_6.1 – Slide 7 Rel. 24/03/2017 © Savino, Sanchez - 2017

Outline

• Constructor and Destructor
• Abstract Classes



Lecture 11_6.1 – Slide 8 Rel. 24/03/2017 © Savino, Sanchez - 2017

Constructor

• Definition:
• A constructor is a special member function whose 

task is to initialize the objects of its class.
– It is special because its name is same as the 

class name.
– The constructor is invoked whenever an object 

of its associated class is created.
– It is called constructor because it should 

construct the values of data members of the 
class.



Lecture 11_6.1 – Slide 9 Rel. 24/03/2017 © Savino, Sanchez - 2017

Constructor

• Example:

class Rectangle {
public:

Rectangle();
...

private:
double _width;
double _length;

};

• It is special because its 
name is same as the 
class name.



Lecture 11_6.1 – Slide 10 Rel. 24/03/2017 © Savino, Sanchez - 2017

Constructor

• Example:

Rectangle::Rectangle()
{

_width = 1;
_length = 1;

}

• It is called constructor 
because it should 
construct the values of 
data members of the 
class.



Lecture 11_6.1 – Slide 11 Rel. 24/03/2017 © Savino, Sanchez - 2017

Constructor

• Example:

int main() {
Rectangle rect;
...

}

• The constructor is 
invoked whenever an 
object of its associated 
class is created.

Rectangle::Rectangle()
{

_width = 1;
_length = 1;

}



Lecture 11_6.1 – Slide 12 Rel. 24/03/2017 © Savino, Sanchez - 2017

Constructor

• Properties:
– There is no need to write any statement to 

invoke the constructor function.
. If a ‘normal’ member function is defined for 

zero initialization, we would need to invoke 
this function for each of the objects 
separately.

– A constructor that accepts no parameters is 
called the default constructor.

– If you write a class with no constructor at all, 
C++ will write a default constructor for you, one 
that does nothing.



Lecture 11_6.1 – Slide 13 Rel. 24/03/2017 © Savino, Sanchez - 2017

Constructor

• Characteristics:
– They should be declared in the public section.
– They do not have return types, not even void and 

they cannot return values.
– They cannot be inherited, though a derived class 

can call the base class constructor.
– Like other C++ functions, Constructors can have

default arguments.
– Constructors can not be virtual.



Lecture 11_6.1 – Slide 14 Rel. 24/03/2017 © Savino, Sanchez - 2017

Constructor

• Parameters:
– To create a constructor that takes arguments:

1. indicate parameters in prototype (.h).
class Rectangle {
public:

Rectangle(double w, double l);
...



Lecture 11_6.1 – Slide 15 Rel. 24/03/2017 © Savino, Sanchez - 2017

Constructor

• Parameters:
– To create a constructor that takes arguments:

1. indicate parameters in prototype (.h).
2. Use parameters in the implementation 

(.cpp).
Rectangle::Rectangle(double w, double l)
{

_width = w;
_length = len;

}



Lecture 11_6.1 – Slide 16 Rel. 24/03/2017 © Savino, Sanchez - 2017

Constructor

• Parameters:
– To create a constructor that takes arguments:

1. indicate parameters in prototype (.h).
2. Use parameters in the implementation 

(.cpp).
3. Pass the arguments to the constructor when 

you create an object.

int main() {
Rectangle rect(5.4, 7.8);
...

}



Lecture 11_6.1 – Slide 17 Rel. 24/03/2017 © Savino, Sanchez - 2017

Constructor

• Parameters:
– If all constructor’s parameters have default 

arguments, then you defined a default 
constructor

class Rectangle {
public:

Rectangle(double w=1, double l=1);
...

int main() {
Rectangle rect(5.4, 7.8);
Rectangle rect2;
...



Lecture 11_6.1 – Slide 18 Rel. 24/03/2017 © Savino, Sanchez - 2017

Multiple Constructors

• Multiple constructors:
– You may need different kind of constructors
– You can create as many as you like

. They must differ in parameters!

class Rectangle {
public:

Rectangle();
Rectangle(double w, double l);
Rectangle(double w_l);
...



Lecture 11_6.1 – Slide 19 Rel. 24/03/2017 © Savino, Sanchez - 2017

Destructor

• A destructor is used to destroy the objects that 
have been created by a constructor.

• Like constructor, the destructor is a member 
function whose name is the same as the class 
name but is preceded by a tilde.

class Rectangle {
public:

Rectangle();
~Rectangle();
...



Lecture 11_6.1 – Slide 20 Rel. 24/03/2017 © Savino, Sanchez - 2017

Destructor

• A destructor never takes any argument nor does it 
return any value.

• It will be invoked implicitly by the compiler upon 
exit from the program – or block or function as the 
case may be – to clean up storage that is no longer 
accessible.

class Rectangle {
public:

Rectangle();
~Rectangle();
...



Lecture 11_6.1 – Slide 21 Rel. 24/03/2017 © Savino, Sanchez - 2017

Destructor

• Example:

class Rectangle {
public:

Rectangle();
~Rectangle();
...

private:
double width, length;

};
...
Rectangle::~Rectangle() {}



Lecture 11_6.1 – Slide 22 Rel. 24/03/2017 © Savino, Sanchez - 2017

Destructor

• Example:

class Rectangle {
public:

Rectangle();
~Rectangle();
...

private:
double width, length;

};
...
Rectangle::~Rectangle() {}

If you do not have a dynamic 
memory management in your 

class, you need an empty
destructor...



Lecture 11_6.1 – Slide 23 Rel. 24/03/2017 © Savino, Sanchez - 2017

Outline

• Constructor and Destructor
• Abstract classes



Lecture 11_6.1 – Slide 24 Rel. 24/03/2017 © Savino, Sanchez - 2017

Abstract Classes

• The goal of object-oriented programming is to 
divide a complex problem into small sets. This 
helps understand and work with problem in an 
efficient way.

• C++, you can create an abstract class that cannot 
be instantiated (you cannot create object of that 
class). Abstract classes are the base class which 
cannot be instantiated. 

• A class containing pure virtual function is known as 
abstract class.



Lecture 11_6.1 – Slide 25 Rel. 24/03/2017 © Savino, Sanchez - 2017

Virtual Keyword

• A virtual function or virtual method is an inheritable 
and override-able function or method.



Lecture 11_6.1 – Slide 26 Rel. 24/03/2017 © Savino, Sanchez - 2017

Virtual Keyword

• Concepts:

class Rectangle {
public:

...
double getArea();
double getPerimeter();

private:
double width, length;

};



Lecture 11_6.1 – Slide 27 Rel. 24/03/2017 © Savino, Sanchez - 2017

Virtual Keyword

• Concepts:

class Circle {
public:

...
double getArea();
double getPerimeter(); 

private:
double radius;

};



Lecture 11_6.1 – Slide 28 Rel. 24/03/2017 © Savino, Sanchez - 2017

Virtual Keyword

• Concepts:

class Circle {
public:

...
double getArea();
double getPerimeter(); 

private:
double radius;

};

This part is generic... but 
works in different ways!



Lecture 11_6.1 – Slide 29 Rel. 24/03/2017 © Savino, Sanchez - 2017

Virtual Keyword

• Concepts:

class Shape {
public:

...
virtual double getArea() = 0;
virtual double getPerimeter() = 0; 

};



Lecture 11_6.1 – Slide 30 Rel. 24/03/2017 © Savino, Sanchez - 2017

Virtual Keyword

• Concepts:

class Shape {
public:

...
virtual double getArea() = 0;
virtual double getPerimeter() = 0; 

};

It defines a pure virtual 
function



Lecture 11_6.1 – Slide 31 Rel. 24/03/2017 © Savino, Sanchez - 2017

Abstract Classes - Usages

• Usage (.h):

class Rectangle : public Shape{
public:

...
double getArea();
double getPerimeter();
...

};



Lecture 11_6.1 – Slide 32 Rel. 24/03/2017 © Savino, Sanchez - 2017

Abstract Classes - Usages

• Usage (.h):

class Rectangle : public Shape{
public:

...
double getArea();
double getPerimeter();
...

};

This way I’m avoiding classes that will 
derive from Shape that do not implement 

those methods... compiler gives you 
errors if you forget the implementation!



Lecture 11_6.1 – Slide 33 Rel. 24/03/2017 © Savino, Sanchez - 2017

Abstract Classes - Usages

• Usage (.cpp):

double Rectangle::getArea() {
... 
}
double Rectangle::getPerimeter() { 
... 
}



Lecture 11_6.1 – Slide 34 Rel. 24/03/2017 © Savino, Sanchez - 2017

Малые Автюхи, Калинковичский район, Республики Беларусь 


