
Lecture
11_5.3 Control Statements

Alessandro Savino
Politecnico di Torino (Italy)
alessandro.savino@polito.it

www.testgroup.polito.it

Lecture 11_5.3 – Slide 2 Rel. 23/03/2017 © Savino, Sanchez - 2017

License Information

This work is licensed under the
Creative Commons BY-NC

License

To view a copy of the license, visit:
http://creativecommons.org/licenses/by-nc/3.0/legalcode

Lecture 11_5.3 – Slide 3 Rel. 23/03/2017 © Savino, Sanchez - 2017

Disclaimer

• We disclaim any warranties or representations as
to the accuracy or completeness of this material.

• Materials are provided “as is” without warranty of
any kind, either express or implied, including
without limitation, warranties of merchantability,
fitness for a particular purpose, and non-
infringement.

• Under no circumstances shall we be liable for any
loss, damage, liability or expense incurred or
suffered which is claimed to have resulted from
use of this material.

Lecture 11_5.3 – Slide 4 Rel. 23/03/2017 © Savino, Sanchez - 2017

Goal

– This lecture presents a global overviews of
problems and issues related to flow control
statements and their proper usage

Lecture 11_5.3 – Slide 5 Rel. 23/03/2017 © Savino, Sanchez - 2017

Prerequisites

– Basic knowledge of C programming language

Lecture 11_5.3 – Slide 6 Rel. 23/03/2017 © Savino, Sanchez - 2017

Homework

– Applies to ALL labs

Lecture 11_5.3 – Slide 7 Rel. 23/03/2017 © Savino, Sanchez - 2017

Outline

• Control Structures
• Relational Operators
• Logical (Boolean) Operators
• Logical Expressions
• Bitwise Operators
• Statements: IF and IF-ELSE
• Structures: SWITCH
• Operators: COMMA
• Functions and constructs: EXIT, ASSERT

Lecture 11_5.3 – Slide 8 Rel. 23/03/2017 © Savino, Sanchez - 2017

• Statements can be
executed in sequence

• One right after the other

• No deviation from the
specified sequence

Control structures

Lecture 11_5.3 – Slide 9 Rel. 23/03/2017 © Savino, Sanchez - 2017

• A selection
structure can be
used

Control structures

Lecture 11_5.3 – Slide 10 Rel. 23/03/2017 © Savino, Sanchez - 2017

• A selection
structure can be
used

• Which statement
is executed depends
on whether the
expression is true
or false

Control structures

Lecture 11_5.3 – Slide 11 Rel. 23/03/2017 © Savino, Sanchez - 2017

• A selection
structure can be
used

• Which statement
is executed depends
on whether the
expression is true
or false

Control structures

Lecture 11_5.3 – Slide 12 Rel. 23/03/2017 © Savino, Sanchez - 2017

• Statements can be
repeated

Control structures

Lecture 11_5.3 – Slide 13 Rel. 23/03/2017 © Savino, Sanchez - 2017

• Statements can be
repeated

• The number of
repetitions depends
on when the
expression turns false

Control structures

Lecture 11_5.3 – Slide 14 Rel. 23/03/2017 © Savino, Sanchez - 2017

• The expressions which determine
– Selection and
– Repetition are usually comparisons

• Comparisons are done with relational operators

Relational operators

Lecture 11_5.3 – Slide 15 Rel. 23/03/2017 © Savino, Sanchez - 2017

• The expressions which determine
– Selection and
– Repetition are usually comparisons

• Comparisons are done with relational operators

Beware of
mistaking the

assignment = for
the equality ==

Relational operators

Lecture 11_5.3 – Slide 16 Rel. 23/03/2017 © Savino, Sanchez - 2017

Examples:
Expression Meaning Value
8 < 15 8 is less than 15 true
6 != 6 6 is not equal to 6 false

2.5 > 5.8 2.5 is greater than 5.8 false

5.9 <= 7.5 5.9 is less than or
equal to 7.5 true

6 == 5.99999… 6 is equal to 5.9999… ???

Relational operators

Lecture 11_5.3 – Slide 17 Rel. 23/03/2017 © Savino, Sanchez - 2017

Given
string str1 = "Hello"; string str2 = "Hi";
string str3 = "Air";
string str4 = "Bill";
string str5 = "Big";

Determine the values of
these comparisons using

variables

Relational operators

Lecture 11_5.3 – Slide 18 Rel. 23/03/2017 © Savino, Sanchez - 2017

• Logical or Boolean operators enable you to
combine logical expressions

• Operands must be logical values
• The results are logical values (true or false)

Logical (Boolean) Operators

C Operator C++ Alternative Description
! not not
&& and and
|| or or

Lecture 11_5.3 – Slide 19 Rel. 23/03/2017 © Savino, Sanchez - 2017

• Logical or Boolean operators enable you to
combine logical expressions

• Operands must be logical values
• The results are logical values (true or false)

Logical (Boolean) Operators

C Operator C++ Alternative Description
! not not
&& and and
|| or or

A unary operator

Binary operators

Lecture 11_5.3 – Slide 20 Rel. 23/03/2017 © Savino, Sanchez - 2017

• The && operator (logical and)
– If both operands are true, the result is true
– If either or both operands is false, the comparison

is false
• The || operator (logical or)

– If either or both of the operands are true, the
comparison is true

– The comparison is false only if both operands are
false

• The ! operator (logical not)
– The not operator reverses the logical value of the

one operand

Logical (Boolean) Operators

Lecture 11_5.3 – Slide 21 Rel. 23/03/2017 © Savino, Sanchez - 2017

• We must know the order in which to apply the
operators
12 > 7 || 9 * 5 >= 6 && 5 < 9

Highest

Lowest

Order of
Precedence

Logical Expressions

Lecture 11_5.3 – Slide 22 Rel. 23/03/2017 © Savino, Sanchez - 2017

• We must know the order in which to apply the
operators
12 > 7 || 9 * 5 >= 6 && 5 < 9

Highest

Lowest

Order of
Precedence

Logical Expressions

What will the compiler say?

It suggests parentheses
around '&&' within '||'

Lecture 11_5.3 – Slide 23 Rel. 23/03/2017 © Savino, Sanchez - 2017

• Pay attention!!!

• What happens if we use () ???
!0&&0||0
!(0&&0)||0

Highest

Lowest

Order of
Precedence

Logical Expressions

Lecture 11_5.3 – Slide 24 Rel. 23/03/2017 © Savino, Sanchez - 2017

• C and C++ have also bitwise operators
– they help you manipulate each bit of a variable.

. most of the time fixed point/integer variables

Bitwise Operators

01001000 AND
10111000 =

00001000

Lecture 11_5.3 – Slide 25 Rel. 23/03/2017 © Savino, Sanchez - 2017

• They require left and right operand
var1/value1 <bitwise op.> var2/value2

Bitwise Operators

C Operator C++ Alternative Description
& bitand and
| bitor or
~ compl 1’s complement
! not not
^ xor xor
<< left shift
>> right shift

Lecture 11_5.3 – Slide 26 Rel. 23/03/2017 © Savino, Sanchez - 2017

• They require left and right operand
var1/value1 <bitwise op.> var2/value2

Bitwise Operators

C Operator C++ Alternative Description
& bitand and
| bitor or
~ compl 1’s complement
! not not
^ xor xor
<< left shift
>> right shift

they can be either a variable or a explicit value
(e.g., var1, 0x3, 5, etc.)

Lecture 11_5.3 – Slide 27 Rel. 23/03/2017 © Savino, Sanchez - 2017

• The result is not permanent if you forget to assign it
somehow
var = var1/value1 <bitwise op.> var2/value2

Bitwise Operators

C Operator C++ Alternative Description
& bitand and
| bitor or
~ compl 1’s complement
! not not
^ xor xor
<< left shift
>> right shift

Lecture 11_5.3 – Slide 28 Rel. 23/03/2017 © Savino, Sanchez - 2017

• The result is not permanent if you forget to assign it
somehow
var = var1/value1 <bitwise op.> var2/value2

Bitwise Operators

C Operator C++ Alternative Description
& bitand and
| bitor or
~ compl 1’s complement
! not not
^ xor xor
<< left shift
>> right shift

this must be a variable!

Lecture 11_5.3 – Slide 29 Rel. 23/03/2017 © Savino, Sanchez - 2017

• In particular, the shift operations expect the right
operand to represents the number of bits to be shifted

0xf << 0x3 // produces 0x78

Bitwise Operators

C Operator C++ Alternative Description
& bitand and
| bitor or
~ compl 1’s complement
! not not
^ xor xor
<< left shift
>> right shift

Lecture 11_5.3 – Slide 30 Rel. 23/03/2017 © Savino, Sanchez - 2017

• In particular, the shift operations expect the right
operand to represents the number of bits to be shifted

0xf << 0x3 // produces 0x78

Bitwise Operators

C Operator C++ Alternative Description
& bitand and
| bitor or
~ compl 1’s complement
! not not
^ xor xor
<< left shift
>> right shift

0xF à 0000 1111
left shift by 3 bits à 0111 1000

7 8

Lecture 11_5.3 – Slide 31 Rel. 23/03/2017 © Savino, Sanchez - 2017

• C++ has “two versions” of if statements

IF statement

Lecture 11_5.3 – Slide 32 Rel. 23/03/2017 © Savino, Sanchez - 2017

• Syntax
if (logicalExpression)

statement;

• Example
if (x < 5)

cout << "low value for x";

IF statement

Lecture 11_5.3 – Slide 33 Rel. 23/03/2017 © Savino, Sanchez - 2017

• Syntax
if (logicalExpression)

statement;

• Example
if (x < 5)
{

cout << "low value for x";
}

IF statement

More readable code

Lecture 11_5.3 – Slide 34 Rel. 23/03/2017 © Savino, Sanchez - 2017

• C++ has “two versions” of if statements
• In this version, the condition is checked

– If the expression
is true, the
statement is
executed

– If it is false,
nothing happens

IF statement

Lecture 11_5.3 – Slide 35 Rel. 23/03/2017 © Savino, Sanchez - 2017

• Also possible a two way selection
• If the expression is

true, statement1 is
executed

• Otherwise statement2
is executed

IF – ELSE statement

Lecture 11_5.3 – Slide 36 Rel. 23/03/2017 © Savino, Sanchez - 2017

• Syntax
if (condition)

statement1;
else
statement2;

• Example
if (x < 5) cout << "low x";

else cout << "high x";

IF – ELSE statement

Lecture 11_5.3 – Slide 37 Rel. 23/03/2017 © Savino, Sanchez - 2017

• Consider the need for multiple statements to be
controlled by the if

• This is called
a compound
statement

• Group the
statements in
curly brackets

Statement1;

Statement2;

Statement3;

Compound Statement

Lecture 11_5.3 – Slide 38 Rel. 23/03/2017 © Savino, Sanchez - 2017

• Example
if (x < 5)

{
x = x + 10;
cout << x;

}

• Note the use of indenting and white space in the
source code for readability. But for readability
ONLY !!! For the compiler this code is equal to:

if (x < 5){x = x + 10;cout << x;}

The compound
statement

Compound Statement

Lecture 11_5.3 – Slide 39 Rel. 23/03/2017 © Savino, Sanchez - 2017

• Syntax calls for a “statement” after the
if (…)

• That statement can be any kind of statement

• It can be another if statement

if (x < 7)
if (y > 5)
cout << “hi mom”;

Nested IF

Lecture 11_5.3 – Slide 40 Rel. 23/03/2017 © Savino, Sanchez - 2017

• How to determine which if the else goes with?

• Example:

if (abs (x - 7))
if (x < 7) cout << “x approaches 7 from left”;

else
cout << “x approaches 7 from the right”;

else
cout << “x not close to 7”;

?

?

Dangling ELSE

Lecture 11_5.3 – Slide 41 Rel. 23/03/2017 © Savino, Sanchez - 2017

• How to determine which if the else goes with?

• Example:

if (abs (x - 7))
if (x < 7) cout << "x approaches 7 from left";

else
cout << "x approaches 7 from the right";

else
cout << "x not close to 7";

Rule : An else goes with the closest unmatched if

?

?

Dangling ELSE

Lecture 11_5.3 – Slide 42 Rel. 23/03/2017 © Savino, Sanchez - 2017

• Rule : an else goes with the closest unmatched if

• Consider … how do you force an else to go with
a previous if?

if (x < y)

if (y > 3) cout << “message about y > 3”;
else cout << “message about x and y”;

if (x < y)

{ if (y > 3) cout << “message about y > 3”; }
else cout << “message about x and y”;

Use { curly brackets }
to nest the statements

Dangling ELSE

Lecture 11_5.3 – Slide 43 Rel. 23/03/2017 © Savino, Sanchez - 2017

• Contrast
– A sequence of
if … else if … statements

– A sequence of separate if statements
• What happens in each case when it is the first if

condition that is true?
–if … else if sequence will jump out of the

structure whenever match is found
– sequence of separate if's – each if is checked,

no mater where the match is.

Multiple selections

Lecture 11_5.3 – Slide 44 Rel. 23/03/2017 © Savino, Sanchez - 2017

• Recall the current branching capability provided by
the
if (…) statement

• Only branches two
ways

• We desire a better way
to do multiway branching

Multiple selections

Lecture 11_5.3 – Slide 45 Rel. 23/03/2017 © Savino, Sanchez - 2017

• Recall the current branching capability provided by
the
if (…) statement

• Only branches two
ways

• We desire a better way
to do multiway branching

Multiple selections

Lecture 11_5.3 – Slide 46 Rel. 23/03/2017 © Savino, Sanchez - 2017

• C++ provides the switch statement

switch (choice) {
case 1 : do_option_one(); break;
case 2 :
case 3 : do_2_3_a ();

do_2_3_b (); break;
default : do_something_else (); }

SWITCH statement

Lecture 11_5.3 – Slide 47 Rel. 23/03/2017 © Savino, Sanchez - 2017

• Value of the switch expression matched with one of
the labels attached to a branch

• The statement(s) with the match get executed

switch (choice) {
case 1 : do_option_one(); break;
case 2 :
case 3 : do_2_3_a ();

do_2_3_b (); break;
default : do_something_else (); }

SWITCH statement

Lecture 11_5.3 – Slide 48 Rel. 23/03/2017 © Savino, Sanchez - 2017

• Switch expression => the expression in
parentheses whose value determines which
switch label is selected
– cannot be floating point
– usually is int or char
– can only control equality
– each case must be different

• Identifiers following case must be constants

SWITCH statement

Lecture 11_5.3 – Slide 49 Rel. 23/03/2017 © Savino, Sanchez - 2017

• The break causes
control to be shifted to
first statement after the
switch statement

• The default statement is
executed if the value of
the switch expression is
NOT found among
switch labels

switch (choice) {
case 1 : do_option_one();

break;
case 2 :
case 3 : do_2_3_a ();

do_2_3_b ();
break;

default : do_something_else ();

}
// next statement

SWITCH statement

Lecture 11_5.3 – Slide 50 Rel. 23/03/2017 © Savino, Sanchez - 2017

• Pay attention!!! C++
inherits a powerful,
functionality from C:
since there is not a
break statement, when
choice is 2 BOTH case 2
and case 3 will be
executed!

switch (choice) {
case 1 : do_option_one();

break;
case 2 :
case 3 : do_2_3_a ();

do_2_3_b ();
break;

default : do_something_else ();

}
// next statement

SWITCH statement

Lecture 11_5.3 – Slide 51 Rel. 23/03/2017 © Savino, Sanchez - 2017

while (expression) {
Processing statement

}

• The while loop iterates until the
expression is true

WHILE loop

Lecture 11_5.3 – Slide 52 Rel. 23/03/2017 © Savino, Sanchez - 2017

int b = 5, c = 0;
while (b < 3){

++c;
}

• What happens if expression is never
true?

WHILE loop

Lecture 11_5.3 – Slide 53 Rel. 23/03/2017 © Savino, Sanchez - 2017

#include <iostream>

void main(void)
{
int x = 0 ;
while(x <= 10)

{
cout << ++x << endl;
}

}

• This will print
the numbers 0 to
10 on successive

lines.

WHILE loop (example)

Lecture 11_5.3 – Slide 54 Rel. 23/03/2017 © Savino, Sanchez - 2017

• The do - while loop is useful in
conditions where a certain set of
processing statements needs to be
performed at least once.

do {
Processing statements

} while (expression);

DO - WHILE loop

Lecture 11_5.3 – Slide 55 Rel. 23/03/2017 © Savino, Sanchez - 2017

#include <iostream>

void main(void){

int x = 0 ;

do{

cout << ++x << endl;

} while(x > 0);

}

DO - WHILE loop (example)

Lecture 11_5.3 – Slide 56 Rel. 23/03/2017 © Savino, Sanchez - 2017

• To enable multiple layers of iteration.

while(expression){
while(expression){
statements

}
}

do {
do {
statements

}while(expression);
}while(expression);

Nested loops

Lecture 11_5.3 – Slide 57 Rel. 23/03/2017 © Savino, Sanchez - 2017

for (initialization; test; update) {
Processing statements

}

• The general syntax of the for statement is :

• The initialization is an assignment statement that
sets the loop control variable(s), before entering
the loop.

• The test is a relational expression, which
determines, when the loop will exit.

• The update defines how the loop control
variable(s) change(s), each time the loop is
executed.

FOR loop

Lecture 11_5.3 – Slide 58 Rel. 23/03/2017 © Savino, Sanchez - 2017

• The three sections of the for loop must be
separated by a semicolon (;) .

• The statement, which forms the body of the loop,
can either be a single statement or a compound
statement.

• The for loop continues to execute as long as
the conditional test evaluates to true. When the
condition becomes false, the program resumes
on the statement following the for loop.

FOR loop

Lecture 11_5.3 – Slide 59 Rel. 23/03/2017 © Savino, Sanchez - 2017

#include <iostream>

void main(void)
{
int x;
for (x=0; x<10; x++)
{

cout << x << endl;
}

}

• This will print
the numbers 0 to
9 on successive

lines.

FOR loop (example)

Lecture 11_5.3 – Slide 60 Rel. 23/03/2017 © Savino, Sanchez - 2017

#include <iostream>

void main(void)
{
int x;
for (x=0; x<10; x++)
{

cout << x << endl;
}

}

• This will print
the numbers 0 to
9 on successive

lines.

FOR loop (example)

x does exist here!

Lecture 11_5.3 – Slide 61 Rel. 23/03/2017 © Savino, Sanchez - 2017

#include <iostream>

void main(void)
{
for (int x=0; x<10; x++)
{

cout << x << endl;
}

}

• This will print
the numbers 0 to
9 on successive

lines.

FOR loop (example)

x does NOT exist here!

Lecture 11_5.3 – Slide 62 Rel. 23/03/2017 © Savino, Sanchez - 2017

• The function exit()is used to terminate a
program immediately. An exit() is used to
check if a mandatory condition for a program
execution is satisfied or not. This function
NEVER returns.

• Provided within cstdlib

• The general form of an exit() is:
exit(int return_code)

EXIT construct

Lecture 11_5.3 – Slide 63 Rel. 23/03/2017 © Savino, Sanchez - 2017

#include <iostream>
#include <stdlib>

void main(void){
int val = 1 ;
char c_entry ;
while(val <= 50){

cout << "Val = " ;
++val ;
cout << "Enter E to exit system
immediately";

cin >> c_entry ;
if(c_entry == 'E' || c_entry == 'e')
exit(0) ;

}
cout << "Exiting system..." ;
}

EXIT Construct (example)

Lecture 11_5.3 – Slide 64 Rel. 23/03/2017 © Savino, Sanchez - 2017

#include <iostream>
#include <stdlib>

void main(void){
int val = 1 ;
char c_entry ;
while(val <= 50){

cout << "Val = " ;
++val ;
cout << "Enter E to exit system
immediately";

cin >> c_entry ;
if(c_entry == 'E' || c_entry == 'e')
exit(0) ;

}
cout << "Exiting system..." ;
} Not reached if exit!

EXIT Construct (example)

Lecture 11_5.3 – Slide 65 Rel. 23/03/2017 © Savino, Sanchez - 2017

#include <iostream>
#include <stdlib>

void main(void){
int val = 1 ;
char c_entry ;
while(val <= 50){

cout << "Val = " ;
++val ;
cout << "Enter E to exit system
immediately";

cin >> c_entry ;
if(c_entry == 'E' || c_entry == 'e')
exit(0) ;

}
cout << "Exiting system..." ;
}

Return code:
0 or EXIT_SUCCESS
indicate success;

EXIT_FAILURE
otherwise

EXIT Construct (example)

Lecture 11_5.3 – Slide 66 Rel. 23/03/2017 © Savino, Sanchez - 2017

Малые Автюхи, Калинковичский район, Республики Беларусь

