
Lecture
11_5.1 Functions,

and Strings

Alessandro SAVINO
Politecnico di Torino (Italy)
alessandro.savino@polito.it

www.testgroup.polito.it

Lecture 11_5.1 – Slide 2 Rel. 20/03/2017 © Savino, Sanchez - 2017

License Information

This work is licensed under the
Creative Commons BY-NC

License

To view a copy of the license, visit:
http://creativecommons.org/licenses/by-nc/3.0/legalcode

Lecture 11_5.1 – Slide 3 Rel. 20/03/2017 © Savino, Sanchez - 2017

Disclaimer

• We disclaim any warranties or representations as
to the accuracy or completeness of this material.

• Materials are provided “as is” without warranty of
any kind, either express or implied, including
without limitation, warranties of merchantability,
fitness for a particular purpose, and non-
infringement.

• Under no circumstances shall we be liable for any
loss, damage, liability or expense incurred or
suffered which is claimed to have resulted from
use of this material.

Lecture 11_5.1 – Slide 4 Rel. 20/03/2017 © Savino, Sanchez - 2017

Goal

– This lecture presents a global overviews of
problems and issues related to functions and
strings

Lecture 11_5.1 – Slide 5 Rel. 20/03/2017 © Savino, Sanchez - 2017

Prerequisites

– Basic knowledge of C programming language

Lecture 11_5.1 – Slide 6 Rel. 20/03/2017 © Savino, Sanchez - 2017

Homework

– None

Lecture 11_5.1 – Slide 7 Rel. 20/03/2017 © Savino, Sanchez - 2017

Outline

• Functions
• String

Lecture 11_5.1 – Slide 8 Rel. 20/03/2017 © Savino, Sanchez - 2017

Functions

• Functions allow a sequence of statements to be
referred to by a name and to be parameterized.

• Calling a function causes the statements sequence
to be executed according to the passed parameters
and a value may be returned when the function
terminates.

Function()

First

parameter

Second

parameter

…

Result

value

Lecture 11_5.1 – Slide 9 Rel. 20/03/2017 © Savino, Sanchez - 2017

• Establishes a name for a group of operations
• Syntax:
<type of result> <function name> (<formal
arguments>)

{
<instructions>

}

– Use void if the function does not return a result
– In <instructions> must appear:
•return <value>; if not void
•return; if void

- (<formal arguments>) are typed!
• Example: (int a, float b)

Function definition

Lecture 11_5.1 – Slide 10 Rel. 20/03/2017 © Savino, Sanchez - 2017

• It is a good practice to declare functions at the
beginning of the program before their use (prototype)

• Syntax:
– Similar to the definition, but we omit the contents

(instructions) of the function

Prototypes

int func1(int a);
...
int main ()
{
...
func1(3);

}
int func1(int a)
{
…
}

Lecture 11_5.1 – Slide 11 Rel. 20/03/2017 © Savino, Sanchez - 2017

• In C++, it is possible to define default values while
creating a function:

Default values

int func1(int a = 3);
...
int main ()
{
…

func1();
func1(14);

}
int func1(int a)
{
…
}

Lecture 11_5.1 – Slide 12 Rel. 20/03/2017 © Savino, Sanchez - 2017

• In C++, it is possible to define default values while
creating a function:

Default values

int func1(int a = 3);
...
int main ()
{
…

func1();
func1(14);

}
int func1(int a)
{
…
}

int variable a is initialized by
default to 3

Lecture 11_5.1 – Slide 13 Rel. 20/03/2017 © Savino, Sanchez - 2017

– The C++ standard libraries contain different
functions. There is no need of .h when included.

Standard libraries

C++ std library
header

Explanation

<iostream> Contains function prototypes for the C++ standard
input and standard output functions. This header file
replaces header file <iostream.h>

<cmath> Contains function prototypes for math library
functions. This header replaces header file <math.h>

<cstdlib> Contains function prototypes for conversions of
numbers to text, text to numbers, memory allocation,
random numbers and various other utility functions.
This header file replaces header file <stdlib.h>

<iomanip> contains function prototypes for the stream
manipulator that enable formatting of streams of data

Lecture 11_5.1 – Slide 14 Rel. 20/03/2017 © Savino, Sanchez - 2017

Standard libraries - 2

C++ std library
header

Explanation

<ctime> Contains function prototypes and types for
manipulating the time and date. This header file
replaces header file <time.h>

<cctype> contains function prototypes for functions that test
characters for certain properties, and function
prototypes for functions that can be used to convert
lowercase letters to uppercase letters and vice versa

<cstring> contains function prototypes for C-style string
processing functions

<memory> contains classes and functions used by the standard
library to allocate memory to the standard library
containers

Lecture 11_5.1 – Slide 15 Rel. 20/03/2017 © Savino, Sanchez - 2017

Standard libraries - 3

C++ std library
header

Explanation

<vector>, <list>,
<deque>, <queue>,
<stack>, <map>,
<set>, <bitset>

These header files contain classes that implement
the C++ Standard Library containers. Containers
store data during a program’s execution

<fstream> Contains function prototypes for functions that
perform input from files on disk and output to files on
disk.

<string> contains the definition of class string from the
standard library

<algorithm> contains functions for manipulating data in the
standard library containers

Lecture 11_5.1 – Slide 16 Rel. 20/03/2017 © Savino, Sanchez - 2017

• Strings are objects that represent sequences of
characters.

• The standard string class provides support for
such objects with an interface similar to that of a
standard container of bytes, but adding features
specifically designed to operate with strings of
single-byte characters.

• The string class is an instantiation of the
basic_string class template that uses char (i.e.,
bytes) as its character type (see basic_string for
more info on the template).

Strings

Lecture 11_5.1 – Slide 17 Rel. 20/03/2017 © Savino, Sanchez - 2017

• A first difference with fundamental data types is that
in order to declare and use objects (variables) of
this type we need to include an additional header
file in our source code: <string> and have access
to the std namespace.

#include <iostream>
#include <string>
using namespace std;
int main () {

string mystring = "This is a string";
cout << mystring;
return 0;

}

Strings – 2

Lecture 11_5.1 – Slide 18 Rel. 20/03/2017 © Savino, Sanchez - 2017

• A first difference with fundamental data types is that
in order to declare and use objects (variables) of
this type we need to include an additional header
file in our source code: <string> and have access
to the std namespace.

#include <iostream>
#include <string>
using namespace std;
int main () {

string mystring = "This is a string";
cout << mystring;
return 0;

}

Strings – 2

Lecture 11_5.1 – Slide 19 Rel. 20/03/2017 © Savino, Sanchez - 2017

• A first difference with fundamental data types is that
in order to declare and use objects (variables) of
this type we need to include an additional header
file in our source code: <string> and have access
to the std namespace

#include <iostream>
#include <string>

int main () {
std::string mystring = "This is a string";
std::cout << mystring;
return 0;

}

Strings – 2

Lecture 11_5.1 – Slide 20 Rel. 20/03/2017 © Savino, Sanchez - 2017

• Copy a string into another:
– destination_str = source_str;
– destination_str.assign(source_str);

• Concatenates s2 to s1:
– s1 += s2;
– s1.append(s2)

• Comparison: return 0 if s1 is equal to s2
– int result = s1.compare(s2);
– int result = s1.compare(0,1,s2,3,2);
– s1==s2 or s1>=s2 or s1<s2;

• Returns the length of s
– int result = s1.length();

Strings – 3

Lecture 11_5.1 – Slide 21 Rel. 20/03/2017 © Savino, Sanchez - 2017

Малые Автюхи, Калинковичский район, Республики Беларусь

