
Lecture
11_4.1 Classes

Alessandro Savino
Politecnico di Torino (Italy)
alessandro.savino@polito.it
www.testgroup.polito.it

http://www.testgroup.polito.it/

Lecture 11_4.1 – Slide 2 Rel. 16/03/2018 © Savino, Sanchez – 2107, 2018

License Information

This work is licensed under the
Creative Commons BY-NC

License

To view a copy of the license, visit:
http://creativecommons.org/licenses/by-nc/3.0/legalcode

Lecture 11_4.1 – Slide 3 Rel. 16/03/2018 © Savino, Sanchez – 2107, 2018

Disclaimer

• We disclaim any warranties or representations as
to the accuracy or completeness of this material.

• Materials are provided “as is” without warranty of
any kind, either express or implied, including
without limitation, warranties of merchantability,
fitness for a particular purpose, and non-
infringement.

• Under no circumstances shall we be liable for any
loss, damage, liability or expense incurred or
suffered which is claimed to have resulted from
use of this material.

Lecture 11_4.1 – Slide 4 Rel. 16/03/2018 © Savino, Sanchez – 2107, 2018

Goal

– This lecture presents a global overview
about C++ classes and objects

Lecture 11_4.1 – Slide 5 Rel. 16/03/2018 © Savino, Sanchez – 2107, 2018

Prerequisites

– C/C++ programming basis

Lecture 11_4.1 – Slide 6 Rel. 16/03/2018 © Savino, Sanchez – 2107, 2018

Homework

– None

Lecture 11_4.1 – Slide 7 Rel. 16/03/2018 © Savino, Sanchez – 2107, 2018

Definition

• Classes are an expanded concept of data
structures: like data structures, they can contain
data members, but they can also contain functions
as members.

• An object is an instantiation of a class. In terms of
variables, a class would be the type, and an object
would be the variable.

Lecture 11_4.1 – Slide 8 Rel. 16/03/2018 © Savino, Sanchez – 2107, 2018

Definition

• Classes:
– Fundamental units for encapsulation
– Allow you to create objects
– Model that defines the appearance of an object
– Set of plans that specify how to build an object
– provide logical abstraction

Lecture 11_4.1 – Slide 9 Rel. 16/03/2018 © Savino, Sanchez – 2107, 2018

Behavior

• Classes are defined using either keyword class or
keyword struct, with the following syntax:

class class-name {
public:
public functions and data
private:
private functions and data
};

Lecture 11_4.1 – Slide 10 Rel. 16/03/2018 © Savino, Sanchez – 2107, 2018

Behavior

• Classes are defined using either keyword class or
keyword struct, with the following syntax:

class class-name { New type for the objects
public:
public functions and data
private: ENCAPSULATION
private functions and data
};

Lecture 11_4.1 – Slide 11 Rel. 16/03/2018 © Savino, Sanchez – 2107, 2018

Behavior

• Public and private sections can be ordered as you
prefer; best practices say to put public first.

class class-name {
public:
public functions and data
private:
private functions and data
};

Lecture 11_4.1 – Slide 12 Rel. 16/03/2018 © Savino, Sanchez – 2107, 2018

Behavior

• When not specified, everything is private by
default:

class class-name {
int a, b;
int somma(int x, int y);

public :
void stampa();

};

Lecture 11_4.1 – Slide 13 Rel. 16/03/2018 © Savino, Sanchez – 2107, 2018

Behavior

• When not specified, everything is private by
default:

class class-name {
int a, b; PRIVATE
int somma(int x, int y);

public :
void stampa();

};

Lecture 11_4.1 – Slide 14 Rel. 16/03/2018 © Savino, Sanchez – 2107, 2018

First example

• Hello world!!

class HelloClass {
public:
void printGreetings()
{

printf(”Hello!!\n”);
}
};

Lecture 11_4.1 – Slide 15 Rel. 16/03/2018 © Savino, Sanchez – 2107, 2018

First example

• Hello world!!

class HelloClass {
public:
void printGreetings()
{

printf(”Hello!!\n”);
}
};

Class definition

Public member
functions

Lecture 11_4.1 – Slide 16 Rel. 16/03/2018 © Savino, Sanchez – 2107, 2018

First example

• Hello world!!

class HelloClass {
public:
void printGreetings()
{

printf(”Hello!!\n”);
}
};

This is going to
be replaced

soon...

Lecture 11_4.1 – Slide 17 Rel. 16/03/2018 © Savino, Sanchez – 2107, 2018

First example - 2

• Hello world!!

int main(int argc, char**argv)
{
HelloClass salutation;
salutation.printGreetings();
return 0;

}

Lecture 11_4.1 – Slide 18 Rel. 16/03/2018 © Savino, Sanchez – 2107, 2018

First example - 2

• Hello world!!

int main()
{
HelloClass salutation;
salutation.printGreetings();
return 0;

}

Object instantiation
or creation

Call object function

Lecture 11_4.1 – Slide 19 Rel. 16/03/2018 © Savino, Sanchez – 2107, 2018

Class example

• Let’s model a generic vehicle:

class Vehicle {
public:
int passengers;
int fuelcap;
int kmpl;

};

Lecture 11_4.1 – Slide 20 Rel. 16/03/2018 © Savino, Sanchez – 2107, 2018

Class example - 2

• How to create (instantiate) a real vehicle?

class Vehicle {
public:
int passengers; // number of passengers
int fuelcap; // fuel capacity in litters
int kmpl; // fuel consumption in

km per litter
};

Lecture 11_4.1 – Slide 21 Rel. 16/03/2018 © Savino, Sanchez – 2107, 2018

Class example - 3

• As for regular variables, class-name object-name

Vehicle minivan, station_wagon;

• Each of the two objects has its own copy of each
variable defined in the class: the two objects do not
share memory

• Access to variable defined in the class (class
members) via the dot “.” operator

minivan.passengers = 7;

Lecture 11_4.1 – Slide 22 Rel. 16/03/2018 © Savino, Sanchez – 2107, 2018

Class example - 4

int main() {
Vehicle minivan; // create a Vehicle object
int range;
minivan.passengers = 7;
minivan.fuelcap = 60;
minivan.kmpl = 7;

range = minivan.fuelcap * minivan.kmpl;

...
return 0;

}

Lecture 11_4.1 – Slide 23 Rel. 16/03/2018 © Savino, Sanchez – 2107, 2018

Class example - 4

int main() {
Vehicle minivan; // create a Vehicle object
int range;
minivan.passengers = 7;
minivan.fuelcap = 60;
minivan.kmpl = 7;

range = minivan.fuelcap * minivan.kmpl;

...
return 0;

}

Public members:
accessible everywhere!

Lecture 11_4.1 – Slide 24 Rel. 16/03/2018 © Savino, Sanchez – 2107, 2018

Example

int main() {
Vehicle minivan; // create a Vehicle object
Vehicle sportscar; // create another object
int range1, range2;

minivan.passengers = 7;
minivan.fuelcap = 60;
minivan.kmpl = 6;

sportscar.passengers = 2;
sportscar.fuelcap = 54;
sportscar.kmpl = 5;

Lecture 11_4.1 – Slide 25 Rel. 16/03/2018 © Savino, Sanchez – 2107, 2018

Example

range1 = minivan.fuelcap * minivan.kmpl;
range2 = sportscar.fuelcap * sportscar.kmpl;

...

return 0;
}

Lecture 11_4.1 – Slide 26 Rel. 16/03/2018 © Savino, Sanchez – 2107, 2018

Example

range1 = minivan.fuelcap * minivan.kmpl;
range2 = sportscar.fuelcap * sportscar.kmpl;

...

return 0;
}

What is the value of range1 and range2
here?

Lecture 11_4.1 – Slide 27 Rel. 16/03/2018 © Savino, Sanchez – 2107, 2018

Methods / Member functions

• Model and change object behavior and data
members

• Usually only accessible points for external world:
class variables should be private

• As regular functions, they have both a prototype
and implementation:
– Prototype is declared within the class
– Implementation everywhere with the “::”

operator

Lecture 11_4.1 – Slide 28 Rel. 16/03/2018 © Savino, Sanchez – 2107, 2018

Methods / Member functions

• As before, methods or member functions are
accessed through the “.” operator:

class_name.function1()

Lecture 11_4.1 – Slide 29 Rel. 16/03/2018 © Savino, Sanchez – 2107, 2018

Improved example

• Let’s model a generic vehicle:

class Vehicle {
int passengers;
int fuelcap;
int kmpl;
public:
void set_members(int p, int f, int k);
int range();
};

Lecture 11_4.1 – Slide 30 Rel. 16/03/2018 © Savino, Sanchez – 2107, 2018

Improved example - 2

• Implement the range method

// Implement the range member function.
int Vehicle::range() {
return kmpl * fuelcap;

}

• Access the range method
var = minivan.range();

Lecture 11_4.1 – Slide 31 Rel. 16/03/2018 © Savino, Sanchez – 2107, 2018

File organization

• class_name.h typically used to declare a class

Vehicle.h
#ifndef _VEHICLE
#define _VEHICLE
class Vehicle {
int passengers;
int fuelcap;
int kmpl;

public:
void set_members(int p, int f, int k);
int range();

};
#endif //Vehicle

Lecture 11_4.1 – Slide 32 Rel. 16/03/2018 © Savino, Sanchez – 2107, 2018

File Organization

• class_name.cpp typically used to instantiate
methods

Vehicle.cpp
int Vehicle::range() {

return kmpl * fuelcap;
}

Lecture 11_4.1 – Slide 33 Rel. 16/03/2018 © Savino, Sanchez – 2107, 2018

File Organization

• class_name.cpp typically used to instantiate
methods

Vehicle.cpp
int Vehicle::range() {

return kmpl * fuelcap;
}

Binary scope resolution
operator

Lecture 11_4.1 – Slide 34 Rel. 16/03/2018 © Savino, Sanchez – 2107, 2018

File Organization - 2
Client code
programmer

class_name.cpp

class_name.h

main.cpp

Class implementation
programmer

Lecture 11_4.1 – Slide 35 Rel. 16/03/2018 © Savino, Sanchez – 2107, 2018

File Organization - 2
Client code
programmer

class_name.cpp

Compiler

class_name.o

class_name.h

main.cpp

Compiler

main.o

Class implementation
programmer

Lecture 11_4.1 – Slide 36 Rel. 16/03/2018 © Savino, Sanchez – 2107, 2018

File Organization - 2
Client code
programmer

Application
user

class_name.cpp

Compiler

class_name.o

class_name.h

Linker

main.cpp

Compiler

main.o

std library

EXE application

Class implementation
programmer

Lecture 11_4.1 – Slide 37 Rel. 16/03/2018 © Savino, Sanchez – 2107, 2018

Малые Автюхи, Калинковичский район, Республики Беларусь

