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Disclaimer

• We disclaim any warranties or representations as 
to the accuracy or completeness of this material.

• Materials are provided “as is” without warranty of 
any kind, either express or implied, including 
without limitation, warranties of merchantability, 
fitness for a particular purpose, and non-
infringement. 

• Under no circumstances shall we be liable for any 
loss, damage, liability or expense incurred or 
suffered which is claimed to have resulted from 
use of this material. 
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Goal

– This lecture presents a global overview 
about C++ classes and objects
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Prerequisites

– C/C++ programming basis
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Homework

– None
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Definition

• Classes are an expanded concept of data 
structures: like data structures, they can contain 
data members, but they can also contain functions 
as members.

• An object is an instantiation of a class. In terms of 
variables, a class would be the type, and an object 
would be the variable.
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Definition

• Classes:
– Fundamental units for encapsulation
– Allow you to create objects
– Model that defines the appearance of an object
– Set of plans that specify how to build an object
– provide logical abstraction
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Behavior

• Classes are defined using either keyword class or 
keyword struct, with the following syntax:

class class-name {
public:
public functions and data
private:
private functions and data
};
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Behavior

• Classes are defined using either keyword class or 
keyword struct, with the following syntax:

class class-name { New type for the objects
public:
public functions and data
private:  ENCAPSULATION
private functions and data
};
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Behavior

• Public and private sections can be ordered as you 
prefer; best practices say to put public first.

class class-name {
public:
public functions and data
private:
private functions and data
};
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Behavior

• When not specified, everything is private by 
default:

class class-name {
int a, b;
int somma(int x, int y);

public :
void stampa();

};



Lecture 11_4.1 – Slide 13 Rel. 16/03/2018 © Savino, Sanchez – 2107, 2018

Behavior

• When not specified, everything is private by 
default:

class class-name {
int a, b;            PRIVATE
int somma(int x, int y);

public :
void stampa();

};
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First example

• Hello world!!

class HelloClass {
public:
void printGreetings()
{

printf(”Hello!!\n”);
} 
};
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First example

• Hello world!!

class HelloClass {
public:
void printGreetings()
{

printf(”Hello!!\n”);
} 
};

Class definition

Public member 
functions
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First example

• Hello world!!

class HelloClass {
public:
void printGreetings()
{

printf(”Hello!!\n”);
} 
};

This is going to 
be replaced 

soon...
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First example - 2

• Hello world!!

int main(int argc, char**argv)
{
HelloClass salutation;
salutation.printGreetings();
return 0;

}
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First example - 2

• Hello world!!

int main()
{
HelloClass salutation;
salutation.printGreetings();
return 0;

}

Object instantiation
or creation 

Call object function
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Class example

• Let’s model a generic vehicle:

class Vehicle {
public:
int passengers;
int fuelcap;
int kmpl;

};
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Class example - 2

• How to create (instantiate) a real vehicle?

class Vehicle {
public:
int passengers; // number of passengers  
int fuelcap;    // fuel capacity in litters  
int kmpl;        // fuel consumption in 

km per litter  
};
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Class example - 3

• As for regular variables, class-name object-name

Vehicle minivan, station_wagon;

• Each of the two objects has its own copy of each 
variable defined in the class: the two objects do not 
share memory

• Access to variable defined in the class (class 
members) via the dot “.” operator

minivan.passengers = 7;



Lecture 11_4.1 – Slide 22 Rel. 16/03/2018 © Savino, Sanchez – 2107, 2018

Class example - 4

int main() {  
Vehicle minivan; // create a Vehicle object 
int range;  
minivan.passengers = 7; 
minivan.fuelcap = 60; 
minivan.kmpl = 7; 

range = minivan.fuelcap * minivan.kmpl;

...
return 0; 

} 
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Class example - 4

int main() {  
Vehicle minivan; // create a Vehicle object 
int range;  
minivan.passengers = 7; 
minivan.fuelcap = 60; 
minivan.kmpl = 7; 

range = minivan.fuelcap * minivan.kmpl; 

... 
return 0; 

} 

Public members:
accessible everywhere!
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Example

int main() {  
Vehicle minivan; // create a Vehicle object 
Vehicle sportscar; // create another object  
int range1, range2;  

minivan.passengers = 7; 
minivan.fuelcap = 60; 
minivan.kmpl = 6; 

sportscar.passengers = 2; 
sportscar.fuelcap = 54; 
sportscar.kmpl = 5; 



Lecture 11_4.1 – Slide 25 Rel. 16/03/2018 © Savino, Sanchez – 2107, 2018

Example

range1 = minivan.fuelcap * minivan.kmpl; 
range2 = sportscar.fuelcap * sportscar.kmpl; 

...

return 0; 
}
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Example

range1 = minivan.fuelcap * minivan.kmpl; 
range2 = sportscar.fuelcap * sportscar.kmpl; 

...

return 0; 
}

What is the value of range1 and range2
here?
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Methods / Member functions 

• Model and change object behavior and data 
members

• Usually only accessible points for external world: 
class variables should be private

• As regular functions, they have both a prototype 
and implementation:
– Prototype is declared within the class
– Implementation everywhere with the “::” 

operator



Lecture 11_4.1 – Slide 28 Rel. 16/03/2018 © Savino, Sanchez – 2107, 2018

Methods / Member functions

• As before, methods or member functions are 
accessed through the “.” operator:

class_name.function1()
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Improved example

• Let’s model a generic vehicle:

class Vehicle {
int passengers;
int fuelcap;
int kmpl;
public:
void set_members(int p, int f, int k);
int range();
};
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Improved example - 2

• Implement the range method

// Implement the range member function.  
int Vehicle::range() { 
return kmpl * fuelcap; 

} 

• Access the range method
var = minivan.range();
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File organization

• class_name.h typically used to declare a class

### Vehicle.h
#ifndef _VEHICLE
#define _VEHICLE
class Vehicle {
int passengers;
int fuelcap;
int kmpl;

public:
void set_members(int p, int f, int k);
int range();

};
#endif //Vehicle
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File Organization

• class_name.cpp typically used to instantiate 
methods

### Vehicle.cpp
int Vehicle::range() { 

return kmpl * fuelcap; 
} 
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File Organization

• class_name.cpp typically used to instantiate 
methods

### Vehicle.cpp
int Vehicle::range() { 

return kmpl * fuelcap; 
} 

Binary scope resolution 
operator
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File Organization - 2
Client code 
programmer

class_name.cpp

class_name.h

main.cpp

Class implementation 
programmer
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File Organization - 2
Client code 
programmer

class_name.cpp

Compiler

class_name.o

class_name.h

main.cpp

Compiler

main.o

Class implementation 
programmer
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File Organization - 2
Client code 
programmer

Application 
user

class_name.cpp

Compiler

class_name.o

class_name.h

Linker

main.cpp

Compiler

main.o

std library

EXE application

Class implementation 
programmer
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Малые Автюхи, Калинковичский район, Республики Беларусь 


