
Lecture
11_1.1 Introduction to C++

Alessandro Savino
Politecnico di Torino (Italy)
alessandro.savino@polito.it
www.testgroup.polito.it

http://www.testgroup.polito.it/

Lecture 11_1.1 – Slide 2 Rel. 02/03/2017 © Savino, Sanchez - 2017

License Information

This work is licensed under the
Creative Commons BY-NC

License

To view a copy of the license, visit:
http://creativecommons.org/licenses/by-nc/3.0/legalcode

Lecture 11_1.1 – Slide 3 Rel. 02/03/2017 © Savino, Sanchez - 2017

Disclaimer

• We disclaim any warranties or representations as
to the accuracy or completeness of this material.

• Materials are provided “as is” without warranty of
any kind, either express or implied, including
without limitation, warranties of merchantability,
fitness for a particular purpose, and non-
infringement.

• Under no circumstances shall we be liable for any
loss, damage, liability or expense incurred or
suffered which is claimed to have resulted from
use of this material.

Lecture 11_1.1 – Slide 4 Rel. 02/03/2017 © Savino, Sanchez - 2017

Goal

– This lecture presents a global overview of
C++ programming language

Lecture 11_1.1 – Slide 5 Rel. 02/03/2017 © Savino, Sanchez - 2017

Prerequisites

– Basic knowledge of C programming language

Lecture 11_1.1 – Slide 6 Rel. 02/03/2017 © Savino, Sanchez - 2017

Homework

– Lab 0

Lecture 11_1.1 – Slide 7 Rel. 02/03/2017 © Savino, Sanchez - 2017

Outline

• History
• Character Set
• Tokens
• Keywords
• Identifiers
• Literals
• Punctuators
• Comments
• Compiler

Lecture 11_1.1 – Slide 8 Rel. 02/03/2017 © Savino, Sanchez - 2017

• In 1980s Bjarne Stroustrup decided to extend the C
language by adding some features from his favorite

language Simula 67. Simula 67 was one of the

earliest object oriented language. Bjarne Stroustrup

called it “C with classes”.

• Later Rick Mascitti renamed as C++. Ever since its
birth, C++ evolved to cope with problems

encountered by users, and though discussions.

History

Lecture 11_1.1 – Slide 9 Rel. 02/03/2017 © Savino, Sanchez - 2017

• In 1985, the first edition of The C++ Programming
Language was released, which became the
definitive reference for the language. The first
commercial implementation of C++ was released in
the same year.

• In 1989 C++ 2.0 was released followed by the
updated second edition of The C++ Programming
Language in 1991. New features included multiple
inheritance, abstract classes, static member
functions, const member functions, and protected
members.

Standard Versions

Lecture 11_1.1 – Slide 10 Rel. 02/03/2017 © Savino, Sanchez - 2017

• In 1990, The Annotated C++ Reference Manual was
published. This work became the basis for the
future standard. Late feature additions
included templates, exceptions, namespaces,
new casts, and a boolean type.

• In 2011, C++11 was released which added more
features and enlarged the standard library further
(compared to it in 1998), providing more facilities
for C++ programmers to use, with more
additions during 2014 and planned for 2017.
– some of them comes from the Boost libraries

project!

Standard Versions

Lecture 11_1.1 – Slide 11 Rel. 02/03/2017 © Savino, Sanchez - 2017

• On www.cplusplus.com you will find (almost) all
you need, including:
– Information
– Tutorials
– Reference
– Articles
– Forum

Official Website

Lecture 11_1.1 – Slide 12 Rel. 02/03/2017 © Savino, Sanchez - 2017

• An integrated development environment (IDE)
or interactive development environment is
a software application that provides comprehensive
facilities to computer programmers for software
development.

• IDE normally consist of a source code editor, build
automation tools and a debugger. Most modern
IDEs have intelligent code completion.

• For lab activities in this course we will use
CodeBlocks 13.12 stable release
(www.codeblocks.org).

IDE

Lecture 11_1.1 – Slide 13 Rel. 02/03/2017 © Savino, Sanchez - 2017

• Character set is a set of valid characters that a
language can recognize. A character represents
any letter, digit, or any other sign.

C++ Character Set

Letters A-Z, a-z
Digits 0-9
Special
Symbols

Space + - * / ^ \ () [] { } = != < > . ‘ “ $
, ; : % ! & ? _(underscore) # <= >= @

White Spaces Blank spaces, Horizontal tab, Carriage
return, New line, Form feed.

Other
Characters

C++ can process any of the 256 ASCII
characters as data or as literals

Lecture 11_1.1 – Slide 14 Rel. 02/03/2017 © Savino, Sanchez - 2017

• The smallest individual unit in a program is known
as a Token or lexical unit.

• Types of Tokens
1. Keywords
2. Identifiers
3. Literals
4. Punctuators
5. Operators

Tokens

Lecture 11_1.1 – Slide 15 Rel. 02/03/2017 © Savino, Sanchez - 2017

• Keywords are the words that convey a special
meaning to the language compiler. These are
reserved for special purpose and must not be used
as normal identifier names.

Keywords

Lecture 11_1.1 – Slide 16 Rel. 02/03/2017 © Savino, Sanchez - 2017

asm continue float new signed try auto
default for operator sizeof typedef break
delete friend private static union case do goto
protected struct unsigned catch double if
public switch virtual char else inline register
template void class enum int return this volatile
const extern long short throw while

Keywords

Lecture 11_1.1 – Slide 17 Rel. 02/03/2017 © Savino, Sanchez - 2017

• Identifiers are names of the program given by
user.

• Rules to write identifiers
– Do not start with digits
– No special symbols except _ (underscore)
– No spaces

Identifiers

Lecture 11_1.1 – Slide 18 Rel. 02/03/2017 © Savino, Sanchez - 2017

• Literals (constants) are data items that never
change their value during a program run.

• Types of Literals:
– Integer constants (e.g., 1, 077, 0xff)
– Floating constants (e.g., 3.1415)
– Character constants (e.g., ‘a’)
– String literals (e.g., “hello”)

Literals

Lecture 11_1.1 – Slide 19 Rel. 02/03/2017 © Savino, Sanchez - 2017

• Integer constants are whole numbers without any
fractional part.

• Three types of Integer constants
– Decimal Integer constant
– Octal Integer constant (starts with 0)
– Hexadecimal Integer constant

(starts with 0x)

Integer Constants

Lecture 11_1.1 – Slide 20 Rel. 02/03/2017 © Savino, Sanchez - 2017

• Character constants are single characters
enclosed in single quotes, as in ‘z’.

Character Constants

Lecture 11_1.1 – Slide 21 Rel. 02/03/2017 © Savino, Sanchez - 2017

• Multiple character constants are treated as string
literals, as in “z” or “hello world!”.

String Literals

Lecture 11_1.1 – Slide 22 Rel. 02/03/2017 © Savino, Sanchez - 2017

\a Audible sound
\b back space
\f Formfeed
\n Newline or Linefeed
\r Carriage return
\t Horizontal tab
\v Vertical tab
\\ Backslash
\’ single quote
\” double quote
\? Question mark
\on Octal number
\xHn Hexadecimal number
\0 Null

Escape Sequences

Lecture 11_1.1 – Slide 23 Rel. 02/03/2017 © Savino, Sanchez - 2017

• The following characters are used as punctuators:
[] () { } , ; : * … = #

– Brackets [] indicate single and
multidimensional array subscripts.

– Parenthesis () indicate function calls and
function parameters.

Punctuators

Lecture 11_1.1 – Slide 24 Rel. 02/03/2017 © Savino, Sanchez - 2017

– Braces { } indicate the start and end of a
compound statement.

– Comma , is used as separator in a function
argument list.

– Semicolon ; is used as statement terminator.
– Colon : indicates a labeled statement.
– Asterisk * is used for pointer declaration.

Punctuators

Lecture 11_1.1 – Slide 25 Rel. 02/03/2017 © Savino, Sanchez - 2017

– Ellipsis … are used in the formal argument
lists of the function prototype to indicate a
variable number of argument.
. this works only if you have this cstdarg in

your header
– example: void function(int a, ...)

– Equal = is used for variable initialization and an
assignment operator in expressions.
. from C...

– Pound sign # is used for preprocessor
directive.
. do you remember #define?

Punctuators

Lecture 11_1.1 – Slide 26 Rel. 02/03/2017 © Savino, Sanchez - 2017

Data Types

Lecture 11_1.1 – Slide 27 Rel. 02/03/2017 © Savino, Sanchez - 2017

Data Types

Lecture 11_1.1 – Slide 28 Rel. 02/03/2017 © Savino, Sanchez - 2017

• Operators are tokens that trigger some
computation when applied to variables and other
objects in an expression.

• Types of operators
– Unary operators (e.g., ~)
– Binary operators (e.g., /)
– Ternary operators (advanced, ?:)

Operators

Lecture 11_1.1 – Slide 29 Rel. 02/03/2017 © Savino, Sanchez - 2017

• Operators are tokens that trigger some
computation when applied to variables and other
objects in an expression.

• Types of operators
– Unary operators (e.g., ~)
– Binary operators (e.g., /)
– Ternary operators (advanced, ?:)

Operators

Pay attention to unary
minus (int a=-5;) and
binary minus (a=5-2;).

Lecture 11_1.1 – Slide 30 Rel. 02/03/2017 © Savino, Sanchez - 2017

& Addresser operator
* Indirection operator
+ Unary plus
- Unary minus
~ Bitwise complement
++ increment operator
-- decrement operator
! Logical negation

Some Unary Operators

Lecture 11_1.1 – Slide 31 Rel. 02/03/2017 © Savino, Sanchez - 2017

+ - / * Arithmetic operators
&& || Logical operators
< ! = > Relational operators

Some Binary Operators

Lecture 11_1.1 – Slide 32 Rel. 02/03/2017 © Savino, Sanchez - 2017

• Comments are pieces of codes that the compiler
discards or ignores or simply does not execute.

• Types of comments:
– Single line comments (//)
– Multiline or block comments (/* … */)

Comments

Lecture 11_1.1 – Slide 33 Rel. 02/03/2017 © Savino, Sanchez - 2017

• A part of the compiler’s job is to analyze the
program code for correctness. If the meaning of
the program is correct, then a compiler cannot
detect errors.

• Types of errors:
– Syntax Errors
– Semantic Errors
– Type Errors
– Run-time Errors
– Logical Errors

Role of the compiler

Lecture 11_1.1 – Slide 34 Rel. 02/03/2017 © Savino, Sanchez - 2017

• A part of the compiler’s job is to analyze the
program code for correctness. If the meaning of
the program is correct, then a compiler cannot
detect errors.

• Types of errors:
– Syntax Errors
– Semantic Errors
– Type Errors
– Run-time Errors
– Logical Errors

Role of the compiler

Pay attention!
Typically not detected by

the compiler

Lecture 11_1.1 – Slide 35 Rel. 02/03/2017 © Savino, Sanchez - 2017

• Syntax Errors are occurred when rules of the
program are wrong i.e., when grammatical rule of
C++ is violated.

int a,b (semicolon missing)

• Semantic Errors are occur when statements not
meaningful.

x*y=z;

• Type Errors are occurred when the data types are
misused.

int a=123.56;

Types of errors

Lecture 11_1.1 – Slide 36 Rel. 02/03/2017 © Savino, Sanchez - 2017

• Run-time Errors are occurred at the time of
execution.

• Logical Errors are occurred when the logic of
program is not proper.

ctr=1;
while(ctr>10){ … }

Types of errors

Lecture 11_1.1 – Slide 37 Rel. 02/03/2017 © Savino, Sanchez - 2017

Малые Автюхи, Калинковичский район, Республики Беларусь

